Tìm các số nguyên x , y biết
\(\dfrac{2}{x}\) + \(\dfrac{5}{y}\) - \(\dfrac{7}{xy}\) = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)
Đặt \(x=15k;y=20k;z=24k\)
Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)
a, \(\dfrac{x}{2}=-\dfrac{5}{y}\Rightarrow xy=-10\Rightarrow x;y\inƯ\left(-10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
x | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
y | -10 | 10 | -5 | 5 | -2 | 2 | -1 | 1 |
c, \(\dfrac{3}{x-1}=y+1\Rightarrow\left(y+1\right)\left(x-1\right)=3\Rightarrow x-1;y+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
x - 1 | 1 | -1 | 3 | -3 |
y + 1 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 4 | -2 |
y | 2 | -4 | 0 | -2 |
b: =>xy=12
\(\Leftrightarrow\left(x,y\right)\in\left\{\left(12;1\right);\left(6;2\right);\left(4;3\right)\right\}\)
\(\dfrac{x}{x^2+yz}+\dfrac{y}{y^2+zx}+\dfrac{z}{z^2+xy}\le\dfrac{x}{2\sqrt{x^2yz}}+\dfrac{y}{2\sqrt{y^2zx}}+\dfrac{z}{2\sqrt{z^2xy}}=\dfrac{1}{2}\left(\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}+\dfrac{1}{\sqrt{xy}}\right)\le\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = z = 1.
\(a,\dfrac{x}{5}=\dfrac{-18}{10}\\ \Rightarrow x=-\dfrac{18}{10}.5\\ \Rightarrow x=-9\\ b,\dfrac{6}{x-1}=\dfrac{-3}{7}\\ \Rightarrow6.7=-3\left(x-1\right)\\ \Rightarrow42=-3x+3\\ \Rightarrow42+3x-3=0\\ \Rightarrow3x+39=0\\ \Rightarrow3x=-39\\ \Rightarrow x=-13\\ c,\dfrac{y-3}{12}=\dfrac{3}{y-3}\\ \Rightarrow\left(y-3\right)^2=36\\ \Rightarrow\left[{}\begin{matrix}y-2=6\\y-2=-6\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}y=8\\y=-4\end{matrix}\right.\)
\(d,\dfrac{x}{25}=\dfrac{-5}{x^2}\\ \Rightarrow x^3=-125\\ \Rightarrow x^3=\left(-5\right)^3\\ \Rightarrow x=-5\)
\(\dfrac{x}{7}+\dfrac{1}{y}=-\dfrac{1}{14}\Leftrightarrow\dfrac{xy+7}{7y}=\dfrac{\dfrac{-y}{2}}{7y}\\ \Leftrightarrow xy+7=-\dfrac{y}{2}\\ 2xy+14=-y\\ y\left(2x+1\right)=-14\)
Vì y,x là số nguyên nên 2x-1 là ước lẻ của -14 = {1;-1;7;-7}
Ta có bảng sau:
2x+1 | 1 | -1 | 7 | -7 |
x | 0 | -1 | 3 | -4 |
y | -14 | 14 | -2 | 2 |
Vậy (x,y) thuộc {(0,-14);(-1,14);(3,-2);(-4,2)}
vậy x và y e (-1,14),(0,-14),(3,-2),(-4,2)
Vì x/7+1/y=-1/14
=xy+7/7y=2/7y
xy+7=y/-2 (y/-2=-y/2)
2yx+14=-y
y.(2x+1)=-14
X và Y là số nguyên
2x-1 ước số lẻ của -14 :-7,-1,1,7
X =0,-1,3,-4
Y=-14,-2,2,14
Bài 1:
+) \(\dfrac{7}{8}\times y=\dfrac{3}{2}+\dfrac{6}{4}=3\)
\(y=3:\dfrac{7}{8}=\dfrac{24}{7}\)
+) \(\dfrac{1}{y}\times\left(\dfrac{2}{5}+\dfrac{1}{5}\right)=\dfrac{10}{3}\)
\(\dfrac{1}{y}=\dfrac{10}{3}:\dfrac{3}{5}=\dfrac{50}{9}\)
\(y=\dfrac{9}{50}\)
Bài 4:
a) \(\dfrac{2.7.13}{26.35}=\dfrac{2.7.13}{13.2.7.5}=\dfrac{1}{5}\)
b) \(\dfrac{23.5-23}{4-27}=\dfrac{23.\left(5-1\right)}{-23}=\dfrac{23.4}{-23}=-4\)
c) \(\dfrac{2130-15}{3550-25}=\dfrac{2115}{3525}=\dfrac{3}{5}\)
Lời giải:
Ta có: \(\frac{2}{x}+\frac{5}{y}-\frac{7}{xy}=1\)
\(\Leftrightarrow \frac{2y+5x}{xy}-\frac{7}{xy}=1\)
\(\Leftrightarrow \frac{2y+5x-7}{xy}=1\Rightarrow 2y+5x-7=xy\)
\(\Rightarrow 2y+5x-xy=7\)
\(\Rightarrow y(2-x)+5x=7\)
\(\Rightarrow y(2-x)-5(2-x)=-3\)
\(\Rightarrow (y-5)(2-x)=-3=1(-3)=(-1).3=3(-1)=(-3).1\)
Lập bảng ta thu được:
\((x=5,y=6)\)
\((x=-1,y=4)\)
\((x=3,y=8)\)
\((x,y)=(1,2)\)