K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2018

a, = (1+7)+7^2.(1+7)+.......................+7^100.(1+7)

=8.(1+7^2+.......+7^100

suy ra chia hết cho 8

6 tháng 10 2018

câu b bạn tách tương tự

8 tháng 8 2017

a) chứng tỏ : abcabc chia hết cho 11

Ta có 123123:11=11193

Vậy abcabc chia hết cho 11

b)\(\frac{9\cdot15\cdot21\cdot12\cdot20}{5\cdot6\cdot45\cdot18\cdot4}=\frac{9\cdot3\cdot5\cdot3\cdot7\cdot2\cdot2\cdot3\cdot2\cdot2\cdot5}{5\cdot2\cdot3\cdot5\cdot3\cdot3\cdot2\cdot3\cdot3\cdot2\cdot2}\)\(=\frac{7\cdot5}{3}=\frac{35}{3}\)

14 tháng 10 2021

\(a,A=7^{15}+7^{16}+7^{17}\)

\(A=7^{15}\left(1+7+7^2\right)\)

\(A=7^{15}.57\)

Ta có :

\(A=7^{15}.57⋮57\)

\(\Rightarrow A⋮57\)

14 tháng 10 2021

\(b,B=2+2^2+2^3+....+2^{60}\)

\(B=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(B=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(B=2.7+...+2^{58}.7\)

\(B=7\left(2+2^4+....+2^{58}\right)\)

Ta có :

\(B=7\left(2+2^4+....+2^{58}\right)⋮7\)

\(\Rightarrow B⋮7\)

23 tháng 12 2024

HHehe

12 tháng 7 2018

ai tích mình mình tích lại cho

1 tháng 3 2020

k di

e he he

25 tháng 10 2023

Bài 1:vì 15 chia hết cho 5 suy ra 2022.15 chia hết cho 5

         vì 25 chia hết cho 5 suy ra 2022.15 + 25 chia hết cho 5

 

25 tháng 10 2020

1) \(1+4+4^2+4^3+...+4^{2012}\)

\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\)

\(=21+21\cdot4^3+...+21\cdot4^{2010}\)

\(=21\cdot\left(1+4^3+...+4^{2010}\right)\) chia hết cho 21

2) \(1+7+7^2+7^3+...+7^{101}\)

\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)

\(=8+8\cdot7^2+...8\cdot7^{100}\)

\(=8\cdot\left(1+7^2+...+7^{100}\right)\) chia hết cho 8

3) CM chia hết cho 5:

\(2+2^2+2^3+2^4+...+2^{100}\)

\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{98}+2^{100}\right)\)

\(=5\cdot2+5\cdot2^2+...+5\cdot2^{98}\)

\(=5\cdot\left(2+2^2+...+2^{98}\right)\) chia hết cho 5

CM chia hết cho 31:

\(2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\cdot31+...+2^{96}\cdot31\)

\(=31\cdot\left(2+...+2^{96}\right)\) chia hết cho 31

19 tháng 11 2023

Rrffhvyccbvfccvbbbhhgg