Tính: (\(\frac{2}{5}\))2003 : (\(\frac{9}{25}\))1000
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{3}{5}\right)^{2003}:\left(\frac{9}{25}\right)^{1000}\)
\(=\left(\frac{3}{5}\right)^{2003}:\left(\left(\frac{3}{5}\right)^2\right)^{1000}\)
\(=\left(\frac{3}{5}\right)^{2003}:\left(\frac{3}{5}\right)^{2000}\)
\(=\left(\frac{3}{5}\right)^3\)
\(=\frac{27}{125}\)
\(\left(\frac{3}{5}\right)^{2003}:\left(\frac{9}{25}\right)^{1000}\)
\(=\frac{3}{5}.\left[\left(\frac{3}{5}\right)^2\right]^{1000}:\left(\frac{9}{25}\right)^{1000}\)
\(=\frac{3}{5}.\left(\frac{9}{25}\right)^{1000}:\left(\frac{9}{25}\right)^{1000}\)
\(=\frac{3}{5}\)
Bài 1:
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
\(\Rightarrow P=\frac{1\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2002}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)
\(\Rightarrow P=\frac{1}{5}-\frac{2}{3}\)
\(\Rightarrow P=\frac{-7}{15}\)
Vậy \(P=\frac{-7}{15}\)
Bài 2:
Ta có: \(S=23+43+63+...+203\)
\(\Rightarrow S=13+10+20+23+...+103+100\)
\(\Rightarrow S=\left(13+23+...+103\right)+\left(10+20+...+100\right)\)
\(\Rightarrow S=3025+450\)
\(\Rightarrow S=3475\)
Vậy S = 3475
1. \(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
=> P =\(\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)
=> P = \(\frac{1}{5}-\frac{2}{3}\)
P = \(\frac{3}{15}-\frac{10}{15}\)
=> P =\(\frac{-7}{15}\)
2. ta có:
S = 23 + 43 + 63 +...+ 203
=> S = 13 + 10 + 23 + 20 +...+ 103 + 100
=> S = ( 13 + 23+...+ 103 ) + ( 10 + 20 +...+ 100 )
=> S = 3025 + 550
=> S = 3575
Vậy S = 3575
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
\(=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)
\(=\frac{1}{5}-\frac{2}{3}=-\frac{7}{15}\)
Ta có:
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
\(P=\frac{1}{5}\cdot\left(\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}\right)-\frac{2}{3}\cdot\left(\frac{\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}}{\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}}\right)\)
\(P=\frac{1}{5}-\frac{2}{3}=-\frac{7}{15}\)
\(\left(\frac{3}{5}\right)^{2012}:\left(\frac{9}{25}\right)^{1000}=\left(\frac{3}{5}\right)^{2012}:\left(\frac{3}{5}\right)^{2000}=\left(\frac{3}{5}\right)^{12}\)
Gộp nhóm 4 => A = -4 * 500+2001+2002-2003=0
B = X = 2 11 1 x^2 1
a) tạm bỏ số 1 ra => có 2012 số hạng=> có 1006 cặp =(-1)
=> A=1+-(-1).1006=-1005
\(\left(\frac{2}{5}\right)^{2003}\div\left(\frac{9}{25}\right)^{1000}\)
\(=\left(\frac{2}{5}\right)^{2003}\div\left(\frac{3^2}{5^2}\right)^{1000}\)
\(=\left(\frac{2}{5}\right)^{2003}\div\left(\frac{3}{5}\right)^{2.1000}\)
\(=\left(\frac{2}{5}\right)^{2003}\div\left(\frac{3}{5}\right)^{2000}\)
\(=\left(\frac{2}{5}\right)^{2000}.\left(\frac{2}{5}\right)^3\div\left(\frac{3}{5}\right)^{2000}\)
\(=\left(\frac{2}{5}\right)^{2000}\div\left(\frac{3}{5}\right)^{2000}.\left(\frac{2}{5}\right)^3\)
\(=\left(\frac{2}{5}:\frac{3}{5}\right)^{2000}.\left(\frac{2}{5}\right)^3\)
\(=\left(\frac{2}{3}\right)^{2000}.\left(\frac{2}{5}\right)^3\)
\(=\frac{2^{2000}.2^3}{3^{2000}.5^3}\)
\(=\frac{2^{2003}}{3^{2000}.5^3}\)