tìm min của \(-\sqrt{xy}\) biết \(\sqrt{x}+\sqrt{y}=4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


+) \(x+y+xy=8\Leftrightarrow\left(x+1\right)\left(y+1\right)=9\)
+) Đặt: \(a=\sqrt{x+1};b=\sqrt{y+1}\)
+) \(P=\frac{\sqrt{x+1}+\sqrt{y+1}}{\left(x+1\right)\left(y+1\right)-\left(x+1\right)-\left(y+1\right)+2}=\frac{a+b}{11-a^2-b^2}\)
\(\ge\frac{2\sqrt{ab}}{11-2ab}=\frac{2\sqrt{3}}{11-2\cdot3}=\frac{2\sqrt{3}}{5}\)
Dấu = xảy ra khi x = y = 2
+) \(P^2=\frac{x+y+8}{\left(xy+1\right)^2}=\frac{16-xy}{\left(xy+1\right)^2}\le\frac{16}{1}=4\)
\(\Rightarrow P\le4\)
Dấu = xảy ra khi \(\orbr{\begin{cases}x=8;y=0\\x=0;y=8\end{cases}}\)

\(\sqrt{x^2+2024}=\sqrt{x^2+xy+yz+zx}=\sqrt{\left(x+y\right)\left(z+x\right)}\ge\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}=\sqrt{xy}+\sqrt{xz}\)
Tương tự: \(\sqrt{y^2+2024}\ge\sqrt{xy}+\sqrt{yz}\)
\(\sqrt{z^2+2024}\ge\sqrt{xz}+\sqrt{yz}\)
Cộng vế:
\(P\ge\dfrac{2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)}{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}=2\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{2024}{3}\)

1. 1/x + 2/1-x = (1/x - 1) + (2/1-x - 2) + 3
= 1-x/x + (2-2(1-x))/1-x + 3
= 1-x/x + 2x/1-x + 3 >= 2√2 + 3
Dấu "=" xảy ra khi x =√2 - 1
2. a = √z-1, b = √x-2, c = √y-3 (a,b,c >=0)
=> P = √z-1 / z + √x-2 / x + √y-3 / y
= a/a^2+1 + b/b^2+2 + c/c^2+3
a^2+1 >= 2a => a/a^2+1 <= 1/2
b^2+2 >= 2√2 b => b/b^2+2 <= 1/2√2
c^2+3 >= 2√3 c => c/c^2+3 <= 1/2√3
=> P <= 1/2 + 1/2√2 + 1/2√3
Dấu = xảy ra khi a^2 = 1, b^2 = 2, c^2 =3
<=> z-1 = 1, x-2 = 2, y-3 = 3
<=> x=4, y=6, z=2
ta có : \(\dfrac{\sqrt{x}+\sqrt{y}}{2}\ge\sqrt{\sqrt{xy}}\) \(\Leftrightarrow\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{4}\ge\sqrt{xy}\)
\(\Leftrightarrow\dfrac{-\left(\sqrt{x}+\sqrt{y}\right)^2}{4}\le-\sqrt{xy}\) \(\Leftrightarrow-\sqrt{xy}\ge\dfrac{-\left(4\right)^2}{4}=-4\)
vậy min của \(-\sqrt{xy}\) là \(-4\) dấu "=" xảy ra khi \(\sqrt{x}=\sqrt{y}=2\Leftrightarrow x=y=4\)