K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2018

Ta có:\(x+y=a+b\Leftrightarrow\left(x+y\right)^2=\left(a+b\right)^2\Leftrightarrow x^2+2xy+y^2=a^2+2ab+b^2\Leftrightarrow2xy=2ab\Leftrightarrow xy=ab\) (vì x2+y2=a2+b2)

Lại có: \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right);a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

Mà x+y=a+b,x2+y2=a2+b2;xy=ab

Do đó \(x^3+y^3=a^3+b^3\) (đpcm)

8 tháng 8 2021

Ta có x + y = a + b 

=> (x + y)2 = (a + b)2 

=> x2 + y2 + 2xy = a2 + b2 + 2ab 

=> xy = ab

Lại có x + y = a + b

=> (x  + y)3 = (a + b)3 

=> x3 + 3x2y + 3xy2 + y3 = a3 + 3a2b + 3ab2 + b3 

=> x3 + y3 + 3xy(x + y) = a3 + b3 + 3ab(a + b)

=> x3 + y3 = a3 + b3 (vì x + y = a + b ; xy = ab)

NM
8 tháng 8 2021

\(x+y=a+b\Leftrightarrow x^2+2xy+y^2=a^2+2ab+b^2\left(1\right)\)

\(x^3+y^3=a^3+b^3\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)=\left(a+b\right)^3-3ab\left(a+b\right)\)

mà do a+b=x+y nên \(ab=xy\) thay vào (1) ta có

\(x^2+y^2=a^2+b^2\)

28 tháng 9 2023

Ta có: 

\(a^3+2c=3ab\)

\(\Rightarrow\left(x+y\right)^3+2\left(x^3+y^3\right)=3\cdot\left(x+y\right)\left(x^2+y^2\right)\)

\(\Rightarrow\left(x^3+3x^2y+3xy^2+y^3\right)+2x^3+2y^3=3\left(x^3+xy^2+x^2y+y^3\right)\)

\(\Rightarrow x^3+3x^2y+3xy^2+y^3+2x^3+2y^3=3x^3+3xy^2+3xy^2+3y^3\)

\(\Rightarrow3x^3+3x^2y+3xy^2+3y^3=3x^3+3x^2y+3xy^2+3y^3\)

\(\Rightarrow\left(3x^3-3x^3\right)+\left(3x^2y-3x^2y\right)+\left(3xy^2-3xy^2\right)+\left(3y^3-3y^3\right)=0\)

\(\Rightarrow0=0\left(dpcm\right)\)

\(\Rightarrow0=0\left(\text{luôn đúng}\right)\)

Vậy, \(a^3+2c=3ab\)

22 tháng 8 2019

31 tháng 5 2018

29 tháng 8 2023

 a) Ta thấy \(xy=\dfrac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}=\dfrac{3^2-5}{2}=2\)

\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\) \(=3\left(5-2\right)=9\)

 b) Ta thấy \(xy=\dfrac{-\left(x-y\right)^2+\left(x^2+y^2\right)}{2}=\dfrac{15-5^2}{2}=-5\)

\(\Rightarrow x^3-y^3=\left(x-y\right)\left(x^2+y^2+xy\right)\) \(=5\left(15-5\right)=50\)