M=1000^2 -99^2 +98^2-97^2 +...+2^2- 1^2
AI ĐÚNG MÌNH TICK CHO
CẢM ƠN NHA
MÌNH CẦN GẤP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=\underbrace{(100+98+96+....+2)}_{M}-\underbrace{(99+97+....+1)}_{N}$
Tổng số hạng của $M$: $(100-2):2+1=50$
$M=(100+2).50:2=2550$
Tổng số hạng của $N$: $(99-1):2+1=50$
$N=(99+1).50:2=2500$
$A=M-N=2550-2500=50$
Sửa đề: A=100+98+96+...+2-99-97-...-1
=100-99+98-97+...+2-1
=1+1+...+1
=50
Ta có:
\(B=2\cdot\left(1\cdot99+2\cdot98+...+50\cdot50\right)-50\cdot50\)
\(=2\cdot\left(1\cdot99+2\cdot\left(99-1\right)+...+50\cdot\left(99-49\right)\right)-50\cdot50\)-
\(=2\cdot\left(1\cdot99+2\cdot99-1\cdot2+...+50\cdot99-49\cdot50\right)-50\cdot50\)
\(=2\cdot\left(\left(1\cdot99+2\cdot99+...+50\cdot99\right)-\left(1\cdot2+2\cdot3+...+49\cdot50\right)\right)-50\cdot50\)
\(=2\cdot\left(\frac{99\cdot50\cdot51}{2}-\frac{49\cdot50\cdot51}{3}\right)-50\cdot50\)
\(=2\cdot84575-2500\)
\(=166650\)
Vậy B=166650
A=1.99+2.98+3.97+...+97.3+98.2+99.1
A=1.99+2.(99−1)+3.(99−2)+...+98.(99−97)+99.(99−98)
A=1.99+2.99−1.2+3.99−2.3+98.99−97.98+99.99−98.99
=(1.99+2.99+3.99+...+98.99+99.99)−(1.2+2.3+3.4+...+97.98+98.99)
=99.(1+2+3+...+98+99)−(1.2+2.3+3.4+...+97.98+98.99)
=99.4950−(1.2+2.3+3.4+97.98+98.99)
Mà 1.2+2.3+3.4+...97.98+98.99
= 1/3 .[1.2+2.3.(4−1)+3.4.(5−2)+98.99.(100−97)]
=1/3.98.99.100
=323400
⇒A=99.4950−323400=166650
1-2-3+4+5-....+96+97-98-99+100
=(1-2-3+4)+....+(97-98-99+100)
=0+.........+0
=0
1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + ... + 96 + 97 - 98 - 99 + 100
Ta thấy tổng trên có 100 số hạng. Ta chia tổng thành tường nhóm, mỗi nhóm có 4 số hạng như sau:
1 - 2 - 3 + 4 + 5 - 6 - 7 - 8 + ... + 96 + 97 - 98 - 99 + 100
= ( 1 - 2 - 3 + 4 ) + ( 5 - 6 - 7 + 8 ) + ... + ( 97 - 98 - 99 + 100 )
= 0 + 0 + ... + 0
= 0
\(A=2^{100}-2^{99}+2^{98}-2^{97}+2-1\\ 2A=2^{101}-2^{100}+2^{99}+...+2^2-2\\ 2A+A=\left(2^{101}-2^{100}+2^{99}+...+2^2-2\right)+\left(2^{100}-2^{99}+2^{98}-2^{97}+2-1\right)\\ 3A=2^{101}-1\\ A=\dfrac{2^{101}-1}{3}\)
\(B=3+3^2+3^3+...+3^{2017}\\ 3B=3^2+3^3+3^4+...+3^{2018}\\ 3B-B=\left(3^2+3^3+3^4+...+3^{2018}\right)-\left(3+3^2+3^3+...+3^{2017}\right)\\ 2B=3^{2018}-3\\ B=\dfrac{3^{2018}-3}{2}\)
\(C=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{1000}}\\ 2C=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{999}}\\ 2C-C=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{999}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{1000}}\right)\\ C=1-\dfrac{1}{2^{1000}}\)
\(A=2^{100}-2^{99}+2^{98}-2^{97}+....+2^2-2\)
\(2A=2^{101}-2^{100}+2^{99}-2^{98}+....+2^3-2^2\)
\(2A+A=2^{101}-2\)
\(A=\frac{2^{101}-2}{3}\)
b) tương tự
\(B=\frac{3^{101}+1}{4}\)