K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2018

Ta có: \(\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+....+\frac{2}{97\times99}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{97}-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}\)

\(=\frac{32}{99}\)

Mà \(32\%=\frac{32}{100}\)

Vì 99 < 100 (cùng tử) \(\Rightarrow\frac{32}{99}>\frac{32}{100}\)

Vậy \(\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{1}{7\times9}+...+\frac{2}{97\times99}>32\%\) (ĐPCM)

25 tháng 7 2018

Ta có: \(\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+...+\frac{2}{97\times99}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}\)

\(=\frac{32}{99}\)

\(\Rightarrow32\%=\frac{32}{100}\)

* Dựa vào cách so sánh phân số của lớp 4 (Phân số có tử bằng nhau ta đi so sánh mẫu số, phân số nào có mẫu số bé hơn thì phân số đó lớn hơn - phân số nào có mẫu số lớn hơn thì phân số đó bé hơn)

 \(\Rightarrow\frac{32}{99}>\frac{32}{100}\)

Vậy \(\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+...+\frac{2}{97\times99}>32\%\left(đpcm\right)\)

21 tháng 2 2020

Đặt A = \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}>\frac{32}{100}=\frac{8}{25}\)

Vậy \(A>\frac{8}{25}\left(\text{ĐPCM}\right)\)

28 tháng 9 2017

78+79+710 chia hết cho 57

Ta có : 78+79+710 = 78.(1+7+72) = 78.57 chia hết cho 57

6410-3211-1613 chia hết cho 19

6410- 3211- 1613 = 260- 255- 252 

=252.28-252.23-252

=252(28-23-1)

=252.247=252.19.13 chia hết cho 19

2+23+25+...+297+299  chia hết cho 5,10

 = (2+2^3)+(2^5+2^7) +...+(2^97+2^99)

= 2(1+4) + 2^5(1+4) + ... + 2^97(1+4)

= 2x5    +    2^5 x 5  + ... +  2^97

= 5(2+2^5+..+2^97) chia hết cho 5

13 tháng 8 2017

Ta có:

\(C= 4+44+444+......+4444444444\)

\(C= 4.(10.1+9.10+8.100+7.1000+...+1.1000000000\)

\(C= 4.(100+90+800+7000+60000+500000+4000000+30000000+200000000+1000000000)\)

\(C=4.12345678900\)

\(C=4938271600\)

Tương tự.

25 tháng 3 2018

cái này bạn mở sách bồi dưỡng toán ra trang gần cuối là thấy ngay ấy mà

30 tháng 8 2017

Đặt:

\(A=\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{5}+\sqrt{7}}+...+\frac{1}{\sqrt{97}+\sqrt{99}}\)

\(\Leftrightarrow2A=\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{5}+\sqrt{7}}+\frac{1}{\sqrt{5}+\sqrt{7}}+...+\frac{1}{\sqrt{97}+\sqrt{99}}+\frac{1}{\sqrt{97}+\sqrt{99}}\)

\(>\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+...+\frac{1}{\sqrt{97}+\sqrt{99}}+\frac{1}{\sqrt{99}+\sqrt{101}}\)

\(=\frac{1}{2}.\left(\sqrt{3}-\sqrt{1}+\sqrt{5}-\sqrt{3}+...+\sqrt{101}-\sqrt{99}\right)\)

\(=\frac{1}{2}.\left(\sqrt{101}-\sqrt{1}\right)>\frac{1}{2}.\left(\sqrt{100}-\sqrt{1}\right)\)

\(=\frac{9}{2}\)

\(\Rightarrow A>\frac{9}{4}\)

30 tháng 8 2017

Câu 2/ Ta có:

\(n^{n+1}>\left(n+1\right)^n\)

\(\Leftrightarrow n>\left(1+\frac{1}{n}\right)^n\left(1\right)\)

Giờ ta chứng minh cái (1) đúng với mọi \(n\ge3\)

Với \(n=3\) thì dễ thấy (1) đúng.

Giả sử (1) đúng đến \(n=k\) hay

\(k>\left(1+\frac{1}{k}\right)^k\)

Ta cần chứng minh (1) đúng với \(n=k+1\)hay \(k+1>\left(1+\frac{1}{k+1}\right)^{k+1}\)

Ta có: \(\left(1+\frac{1}{k+1}\right)^{k+1}< \left(1+\frac{1}{k}\right)^{k+1}=\left(1+\frac{1}{k}\right)^k.\left(1+\frac{1}{k}\right)\)

\(< k\left(1+\frac{1}{k}\right)=k+1\)

Vậy có ĐPCM

9 tháng 5 2016

m= 32/99----n=291/995

9 tháng 5 2016

neu cach lam nha cac ban

=1/3-1/5+1/5-1/7+1/7-1/9+...+1/97-1/99

=1/3-1/99

=32/99

**** mình nha

21 tháng 6 2018

\(D=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)

\(\Rightarrow D=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)

\(\Rightarrow D=\frac{1}{3}-\frac{1}{99}=\frac{33}{99}-\frac{1}{99}=\frac{32}{99}\)

P/S : dấu . là dấu nhân nha