K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

Ta có:

\(\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{2ab}+\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\)

Áp dụng bất đẳng thức:\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) ta có:

\(\dfrac{1}{2ab}+\dfrac{1}{a^2+b^2}\ge\dfrac{4}{a^2+2ab+b^2}=\dfrac{4}{\left(a+b\right)^2}=\dfrac{4}{1^2}=4\) ( vì a + b = 1)

Áp dụng bất đẳng thức \(4xy\le\left(x+y\right)^2\) ta có:

\(4ab\le\left(a+b\right)^2=1^2=1\)

\(\Rightarrow\dfrac{2}{4ab}\ge\dfrac{2}{1}\)

\(\Rightarrow\dfrac{1}{2ab}\ge2\)

Khi đó:

\(\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{2ab}+\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\ge4+2=6\) (đpcm)

Dấu "=" xảy ra khi a = b và a + b = 1 nên a = b = \(\dfrac{1}{2}\)

20 tháng 4 2022

jz pà:)) 

20 tháng 4 2022

ai zạy ta 
cho ai nick đóa à

24 tháng 4 2018

Đặt \(C=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}\)

\(C=\dfrac{1}{2ab}+\dfrac{1}{2ab}+\dfrac{1}{a^2+b^2}\)

Ta có:\(2ab\le\dfrac{\left(a+b\right)^2}{2}\)(tự cm)

\(\Rightarrow\dfrac{1}{2ab}\ge\dfrac{1}{\dfrac{1}{2}}=2\)

Lại có:\(\dfrac{1}{2ab}+\dfrac{1}{a^2+b^2}\ge\dfrac{4}{a^2+2ab+b^2}=\dfrac{4}{\left(a+b\right)^2}=4\)(tự cm)

\(\Rightarrow C\ge2+4=6\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
8 tháng 8 2017

Bài 3:

a) Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\) \(\geq 2.\frac{(1+1)^2}{2xy+x^2+y^2}=\frac{8}{(x+y)^2}=8\)

Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)

b) Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{xy}+\frac{1}{x^2+y^2}=\frac{1}{2xy}+\left (\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\geq \frac{1}{2xy}+\frac{(1+1)^2}{2xy+x^2+y^2}\)

\(=\frac{1}{2xy}+\frac{4}{(x+y)^2}\)

Theo BĐT AM-GM:

\(xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}\Rightarrow \frac{1}{2xy}\geq 2\)

Do đó \(\frac{1}{xy}+\frac{1}{x^2+y^2}\geq 2+4=6\)

Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
8 tháng 8 2017

Bài 1: Thiếu đề.

Bài 2: Sai đề, thử với \(x=\frac{1}{6}\)

Bài 4 a) Sai đề với \(x<0\)

b) Áp dụng BĐT AM-GM:

\(x^4-x+\frac{1}{2}=\left (x^4+\frac{1}{4}\right)-x+\frac{1}{4}\geq x^2-x+\frac{1}{4}=(x-\frac{1}{2})^2\geq 0\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} x^4=\frac{1}{4}\\ x=\frac{1}{2}\end{matrix}\right.\) (vô lý)

Do đó dấu bằng không xảy ra , nên \(x^4-x+\frac{1}{2}>0\)

Bài 6: Áp dụng BĐT AM-GM cho $6$ số:

\(a^2+b^2+c^2+d^2+ab+cd\geq 6\sqrt[6]{a^3b^3c^3d^3}=6\)

Do đó ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=d=1\)

10 tháng 8 2017

5) a) Đặt b+c-a=x;a+c-b=y;a+b-c=z thì 2a=y+z;2b=x+z;2c=x+y

Ta có:

\(\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}=\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}=\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\ge6\)

Vậy ta suy ra đpcm

b) Ta có: a+b>c;b+c>a;a+c>b

Xét: \(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)

.Tương tự:

\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c};\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)

Vậy ta có đpcm

10 tháng 8 2017

6) Ta có:

\(a^2+b^2+c^2+d^2+ab+cd\ge2ab+2cd+ab+cd=3\left(ab+cd\right)\)

\(ab+cd=ab+\dfrac{1}{ab}\ge2\)

Suy ra đpcm

3 tháng 1 2019

3/ Áp dụng bất đẳng thức AM-GM, ta có :

\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)

\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)

\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)

Cộng 3 vế của BĐT trên ta có :

\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)

\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)

AH
Akai Haruma
Giáo viên
4 tháng 1 2019

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)

Tiếp tục áp dụng BĐT AM-GM:

\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)

Do đó:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

15 tháng 3 2021

I. Đúng do BĐT Cosi \(a+\dfrac{9}{a}\ge2.\sqrt{a.\dfrac{9}{a}}=6\)

II. Sai do \(\dfrac{a^2+5}{\sqrt{a^2+4}}=\sqrt{a^2+4}+\dfrac{1}{\sqrt{a^2+4}}\ge2+\dfrac{1}{a^2+4}>2\)

III. Đúng do BĐT Cosi \(\dfrac{\sqrt{ab}}{ab+1}\le\dfrac{\sqrt{ab}}{2\sqrt{ab}}=\dfrac{1}{2}\)

IV. Đúng do BĐT BSC \(\left(a+\dfrac{1}{b}\right)\left(b+\dfrac{1}{a}\right)\ge\left(\sqrt{a}.\dfrac{1}{\sqrt{a}}+\sqrt{b}.\dfrac{1}{\sqrt{b}}\right)^2=4\)

AH
Akai Haruma
Giáo viên
22 tháng 11 2017

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}=\frac{1}{1+ab}+\frac{a^2}{a+ab}+\frac{b^2}{b+ab}\geq \frac{(1+a+b)^2}{1+ab+a+ab+b+ab}\)

\(\Leftrightarrow \text{VT}\geq \frac{(a+b+1)^2}{a+b+1+3ab}\)

\(\Leftrightarrow \text{VT}\geq \frac{(a+b+1)^2}{a+b+1+3(3-a-b)}=\frac{(a+b+1)^2}{10-2(a+b)}\)

Theo giả thiết:

\(3=a+b+ab\Leftrightarrow 4=a+b+ab+1=(a+1)(b+1)\)

\(\leq \left (\frac{a+b+2}{2}\right)^2\) (theo BĐT AM-GM)

suy ra \(a+b+2\geq 4\Leftrightarrow a+b\geq 2\) (với \(a,b>0\) )

Do đó: \((a+b+1)^2\geq 9\) (1)

\(10-2(a+b)\leq 10-2.3=4; 10-2(a+b)=4+2ab>0\)

\(\Rightarrow \frac{1}{10-2(a+b)}\geq \frac{1}{6}\) (2)

Từ \((1);(2)\Rightarrow A\geq \frac{(a+b+1)^2}{10-2(a+b)}\geq \frac{9}{6}=\frac{3}{2}\)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=1\)

23 tháng 11 2017

Hong Ra On Cái đó là BĐT Cauchy này nè :

\(xy\le\left(\dfrac{x+y}{2}\right)^2=\dfrac{\left(x+y\right)^2}{4}\)

Áp dụng vào:

\(\left(a+1\right)\left(b+1\right)\le\dfrac{\left(a+b+1+1\right)^2}{4}=\left(\dfrac{a+b+2}{2}\right)^2\)