Tìm số tự nhiên n để phân số \(\dfrac{6n+1}{3n+2}\)
a) Có giá trị là số tự nhiên
b) Là phân số tối giản
c) Là phân số có thể rút gọn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d
=> (14n+3) -(21n+4) \(⋮\)d
=> 3(14n+3) -2(21n+4) \(⋮\)d
=> 42n+9 - 42n -8 \(⋮\)d
=> 1\(⋮\)d
=> 21n+4/14n+3 là phân số tối giản
Vậy...
c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d
=> (6n+4) - (21n+3) \(⋮\)d
=> 7(6n+4) - 2(21n+3) \(⋮\)d
=> 42n +28 - 42n -6\(⋮\)d
=> 22 \(⋮\)cho số nguyên tố d
d \(\in\){11;2}
Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11
Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ
Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11
Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được
ta có : \(\frac{n+1}{n-1}=\frac{n-1+2}{n-1}\) \(=\frac{2}{n-1}\)
để \(\frac{n+1}{n-1}\) là số tự nhiên thì \(\frac{2}{n-1}\) phải là số tự nhiên
hay 2 chia hết cho n - 1
\(\Rightarrow n-1\inƯ\left(2\right)\)
mà Ư(2) = { - 2; -1; 1; 2}
\(\Rightarrow n-1\in\left\{-2;-1;1;2\right\}\)
\(\Rightarrow n\in\left\{-1;0;2;3\right\}\)
vì n là số tự nhiên
\(\Rightarrow n\in\left\{0;2;3\right\}\)
vậy .......
ủng hộ mk nha
\(\frac{n+1}{n-1}=\frac{\left(n-1\right)+2}{n-1}=\frac{n-1}{n-1}+\frac{2}{n-1}=1+\frac{2}{n-1}\)
Để \(1+\frac{2}{n-1}\) là số tự nhiên <=> \(\frac{2}{n-1}\) là số tự nhiên
=> n - 1 \(\in\) Ư(2) = { - 2; - 1; 1; 2 }
Ta có : n - 1 = - 2 => n = - 1 (loại)
n - 1 = - 1 => n = 0 (tm)
n - 1 = 1 => n = 2 (tm)
n - 1 = 2 => n = 3 (tm)
Vậy n = { 0; 2; 3 }
Câu 3 :
b. P là nguyên tố khi và chỉ khi n + 4 chia hết cho 2n - 1
=> 2n + 8 chia hết cho 2n - 1
mà 2n - 1 chia hết cho 2n - 1 . Suy ra 9 chia hết cho 2n - 1
=> 2n - 1 \(\inƯ\)(9) = { 1 , 3 , 9 }
=> 2n - 1 \(\in\) { 1 ,3 , 9 }
=> 2n\(\in\){ 2 , 4 ,10}
=> n\(\in\){ 1, 2 ,5 }
=> P\(\in\){ 5 , 2 , 1 }
Vì P là nguyên tố nên P\(\in\){ 5,2}
vậy n\(\in\){ 1 , 2 }
Câu 4 :
Ta có:2n+2 chia hết n+2
2.(n+2) chia hết n+2
2.n+4 chia hết cho n+2
2n+2-2n+4 chia hết cho n+2
-6 chia hết cho n+2 hay n+2 thuộc Ư(-6)=+1 -1,2,-2,3,-3,6,-6
Bạn lập bảng
n+2 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n |
Kết quả bạn tự tính và cái nào thuộc Z thì bạn chọ nha!!Nhớ k cho mk
==> 4n + 7 +4n +7 +61/4n + 7
= 61/4n + 7
==> 4n+1e Ư(61)
Uc(61) = { -1; 1; 61; -61}
vậy n là -1.5;-2;13.5;17.
==> 4n + 7 +4n +7 +61/4n + 7
= 2/1 + 61/4n + 7
==> 4n+1e Ư(61)
Uc(61) = { -1; 1; 61; -61}
vậy n là -1.5;-2;13.5;17.
mình nhần nha
Vì A \(\inℕ\)=> 3A \(\in N\)
Khi đó 3A = \(\frac{3n+27}{3n+2}=\frac{3n+2+25}{3n+2}=1+\frac{25}{3n+2}\)
3A \(\in N\)<=> 25 \(⋮3n+2\Leftrightarrow3n+2\inƯ\left(25\right)\)
=> 3n + 2 \(\in\left\{1;5;-1;-5;25;-25\right\}\)
<=> n = 1 (vì n \(\inℕ\))
Thay n = 1 vào A => A = 2 (TM)
Vậy n = 1 là giá trị phải tìm
để a là số tự nhiên thì n+9 chia hết cho 3n+2
nên 3.(n+9) cũng chia hết cho 3.n+2
suy ra 3n+27 chia hết cho 3n+2
3n+2+25 chia hết cho 3n+2
mà 3n+2 chia hết cho 3n+2 nên để 3n+2+25 là số tự nhiên
thì 25 phải chia hết cho 3n+2
suy ra 3n+2 thuộc tập Ư(25)={1,5,25} (n là số tự nhiên)
3n+2=1.n=-1/3 ko thỏa mãn n là số tự nhiên
3n+2=5,n=1,thỏa mãn
3n+2=25,n=25/3 ko thỏa mãn n là số tự nhiên
vậy n=1 thì phân số A =n+9/3n+2 là STN
là \(\dfrac{6n+1}{3n+2}\) nhé