K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2018

ta có : \(x^4-4x^2+8x-4>0\Leftrightarrow\left(x^2-2x+2\right)\left(x^2+2x-2\right)>0\)

do \(x^2-2x+2>0\forall x\) rồi nên dấu của biểu thức phụ thuộc vào \(x^2+2x-2\) \(\Rightarrow\) bpt \(\Leftrightarrow x^2+2x-2>0\)

ta có : phương trình \(x^2+2x-2\) có 2 nghiệm \(\left[{}\begin{matrix}x=-1+\sqrt{3}\\x=-1-\sqrt{3}\end{matrix}\right.\)

\(a=1>0\) \(\Rightarrow\) để \(x^2+2x-2>0\) thì \(\left[{}\begin{matrix}x>-1+\sqrt{3}\\x< -1-\sqrt{3}\end{matrix}\right.\)

vậy \(S=\left(-\infty;-1-\sqrt{3}\right)\cup\left(-1+\sqrt{3};+\infty\right)\)

16 tháng 12 2021

Bài 1: 

b: \(\Leftrightarrow x-2=0\)

hay x=2

16 tháng 12 2021

anh ơi, vậy là sai đề hả anh, chứ đề kêu chứng minh phương trình vô nghiệm mà em thấy anh ghi x=2

12 tháng 3 2020

x⁴ - 4x² + 12x - 9 = 0

<=> x⁴ - x³ + x³ - x² - 3x² + 3x + 9x - 9 = 0

<=> x³(x - 1) + x²(x - 1) - 3x(x - 1) + 9(x - 1) = 0

<=> (x - 1)(x³ + x² - 3x + 9) = 0

<=> (x - 1)(x³ + 3x² - 2x² - 6x + 3x + 9) = 0

<=> (x - 1)[ x²(x + 3) - 2x(x + 3) + 3(x + 3) ] = 0

<=> (x - 1)(x + 3)(x² - 2x + 3) = 0

<=> (x - 1)(x + 3)(x² - 2x + 1 + 2) = 0

<=> (x - 1)(x + 3)[ (x - 1)² + 2 ] = 0

<=> (x - 1)(x + 3) = 0 --> do (x - 1)² + 2 > 0 với mọi x

<=>

[ x - 1 = 0 =>[ x = 1

[ x + 3 = 0 =>[ x = -3

Bạn nên sửa >= là = vì giải bất phương trình mà

6 tháng 2 2021

\(4x^2-4x-5\left|2x-1\right|-5=0\)

\(\Leftrightarrow-5\left|2x-1\right|=5-4x^2+4x\)

\(\Leftrightarrow\left|2x-1\right|=\frac{-4x^2+4x+5}{-5}\)

\(\Leftrightarrow\left|2x-1\right|=\frac{4x\left(x-1\right)}{5}-1\)

TH1 : \(2x-1=\frac{4x\left(x-1\right)}{5}-1\Leftrightarrow2x=\frac{4x\left(x-1\right)}{5}\)

\(\Leftrightarrow10x=4x^2-4x\Leftrightarrow14x-4x^2=0\)

\(\Leftrightarrow-2x\left(2x-7\right)=0\Leftrightarrow x=0;x=\frac{7}{2}\)

TH2 : \(2x-1=-\left(\frac{4x\left(x-1\right)}{5}-1\right)\Leftrightarrow2x-1=-\frac{4x\left(x-2\right)}{5}+1\)

\(\Leftrightarrow2x-2=-\frac{4x\left(x-2\right)}{5}\Leftrightarrow10x-10=-4x^2+8x\)

\(\Leftrightarrow2x-10+4x^2=0\Leftrightarrow2\left(2x^2+x-5\ne0\right)=0\)tự chứng minh 

Vậy tập nghiệm của phương trình là S = { 0 ; 7/2 }

5 tháng 6 2017

Vì x2 + 12 > 0 với mọi x

=> (4x-1)(x2+12)(-x+4) > 0

Khi ( (4x-1)(-x+4) > 0

TH1 : \(\hept{\begin{cases}4x-1>0\\-x+4>0\end{cases}}\)

  <=> \(\hept{\begin{cases}x>\frac{1}{4}\\x< 4\end{cases}}\)

=> 1/4 < x < 4

TH2  \(\hept{\begin{cases}4x-1< 0\\-x+4< 0\end{cases}}\)

<=>  \(\hept{\begin{cases}x< \frac{1}{4}\\x>4\end{cases}}\)

Vì không tồn tai x lớn hơn 4 và nhỏ hơn 1/4

=> TH2  không tồn tại x

=> (4x-1)(x2+12)(-x+4) > 0

 khi 1/4 < x < 4

5 tháng 6 2017

Vì x^2 + 12 > 0 với mọi x

Ta có bất phương trình tương đương: (4x-1)(-x+4) > 0

=> 4x-1 và -x+4 phải cùng dấu.

Trường hợp 1: 4x-1 > 0 và -x + 4 > 0 <=> x>1/4 và x<4 <=> 1/4 < x < 4.

Trường hợp 2: 4x-1 < 0 và -x + 4 < 0 <=> x<1/4 và x>4 (vô lý)

Vậy S={x | 1/4 < x < 4}

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) \(2{x^2} + 3x + 1 \ge 0\)

Tam thức bậc hai \(f\left( x \right) = 2{x^2} + 3x + 1\) có 2 nghiệm phân biệt \(x =  - 1,x = \frac{{ - 1}}{2}\)

hệ số \(a = 2 > 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \le  - 1\\x \ge  - \frac{1}{2}\end{array} \right.\)

Vậy tập nghiệm của bất phương trình là \(\left( { - \infty ; - 1} \right] \cup \left[ { - \frac{1}{2}; + \infty } \right)\)

b) \( - 3{x^2} + x + 1 > 0\)

Tam thức bậc hai \(f\left( x \right) =  - 3{x^2} + x + 1\) có 2 nghiệm phân biệt \(x = \frac{{1 - \sqrt {13} }}{6},x = \frac{{1 + \sqrt {13} }}{6}\)

Hệ số \(a =  - 3 < 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) > 0\)\( \Leftrightarrow \frac{{1 - \sqrt {13} }}{6} < x < \frac{{1 + \sqrt {13} }}{6}\)

Vậy tập nghiệm của bất phương trình là \(\left( {\frac{{1 - \sqrt {13} }}{6};\frac{{1 + \sqrt {13} }}{6}} \right)\)

c) \(4{x^2} + 4x + 1 \ge 0\)

Tam thức bậc hai \(f\left( x \right) = 4{x^2} + 4x + 1\) có nghiệm duy nhất \(x = \frac{{ - 1}}{2}\)

hệ số \(a = 4 > 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) \ge 0 \Leftrightarrow x \in \mathbb{R}\)

Vậy tập nghiệm của bất phương trình là \(\mathbb{R}\)

d) \( - 16{x^2} + 8x - 1 < 0\)

Tam thức bậc hai \(f\left( x \right) =  - 16{x^2} + 8x - 1\) có nghiệm duy nhất \(x = \frac{1}{4}\)

hệ số \(a =  - 16 < 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) < 0 \Leftrightarrow x \ne \frac{1}{4}\)

Vậy tập nghiệm của bất phương trình là \(\mathbb{R}\backslash \left\{ {\frac{1}{4}} \right\}\)

e) \(2{x^2} + x + 3 < 0\)

Ta có \(\Delta  = {1^2} - 4.2.3 =  - 23 < 0\) và có \(a = 2 > 0\)

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \(2{x^2} + x + 3\) mang dấu “-” là \(\emptyset \)

Vậy tập nghiệm của bất phương trình \(2{x^2} + x + 3 < 0\) là \(\emptyset \)

g) \( - 3{x^2} + 4x - 5 < 0\)

Tam thức bậc hai \(f\left( x \right) =  - 3{x^2} + 4x - 5\) có \(\Delta ' = {2^2} - \left( { - 3} \right).\left( { - 5} \right) =  - 11 < 0\) và có \(a =  - 3 < 0\)

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \( - 3{x^2} + 4x - 5\) mang dấu “-” là \(\mathbb{R}\)

Vậy tập nghiệm của bất phương trình \( - 3{x^2} + 4x - 5 < 0\) là \(\mathbb{R}\)

2:

a: =>2x^2-4x-2=x^2-x-2

=>x^2-3x=0

=>x=0(loại) hoặc x=3

b: =>(x+1)(x+4)<0

=>-4<x<-1

d: =>x^2-2x-7=-x^2+6x-4

=>2x^2-8x-3=0

=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)