cho tam giác ABC vẽ trung tuyến AM. CMR : Nếu Cot B=3 Cot C thì AM=AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H M
a) Do AM là trung tuyến nên BM = MC
Ta có : \(HC-HB-2HM\)
\(=HM+MC-HB-HM-HM\)
\(=MC-HB-HM\)
\(=MC-\left(HB+HM\right)\)
\(=MC-MB=0\)
\(\Rightarrow HC-HB=2MC\left(đpcm\right)\)
b) Xét \(\Delta AHM\)có \(\tan a=\frac{HM}{AH}\)
Xét \(\Delta AHC\)có \(\cot C=\frac{HC}{AH}\)
Xét \(\Delta AHB\)có \(\cot B=\frac{HB}{AH}\)
Ta có : \(\frac{\cot C-\cot B}{2}=\left(\frac{HC}{AH}-\frac{HB}{AH}\right)\div2=\frac{HC-HB}{AH}\div2\)
Mà \(HC-HB=2HM\)( câu a )
\(\Rightarrow\frac{\cot C-\cot B}{2}=\frac{2HM}{AH}\div2=\frac{HM}{AH}=\tan a\left(đpcm\right)\)
Vậy ...
Gọi AH là đường cao của tam giác ABC (H thuộc BC)
Ta có : cot B=\(\dfrac{BH}{AH}\);cot C= \(\dfrac{CH}{AH}\) . Theo giả thiết : cot B=3 cot C ⇒ BH = 3CH
Mà BH + CH = BC⇒ BC= 4CH⇒ CH= \(\dfrac{BC}{4}\) = \(\dfrac{2CM}{4}\) = \(\dfrac{CM}{2}\)
Vậy CH = \(\dfrac{1}{2}\) CM
Ta cũngcó: BH = BM + MH = 2CH + MH = 3CH ⇒ MH = CH
Do đó AH là đường trung trực của CM => AC = AM (đpcm)
Hình bạn tự vẽ nha máy mình không vẽ được hình học
Chúc bạn mùa hè vui vẻ
Đáp án D
Do tam giác ABC vuông tại A có đường trung tuyến AM ứng với cạnh huyền nên:
A C B H M
Gọi AH là đường cao của tam giác ABC (H thuộc BC)
Ta có : \(cotB=\frac{BH}{AH};cotC=\frac{CH}{AH}\) . Theo giả thiết : \(cotB=3cotC\Rightarrow BH=3CH\)
Mà BH + CH = BC\(\Rightarrow BC=4CH\Rightarrow CH=\frac{BC}{4}=\frac{2CM}{4}=\frac{CM}{2}\)
Vậy \(CH=\frac{1}{2}CM\); Ta cũng có : \(BH=BM+MH=2CH+MH=3CH\Rightarrow MH=CH\)
Do đó AH là đường trung trực của CM => AC = AM (đpcm)
AM sao có thể bằng AC đc? Đề có vấn đề j ko bn?