Tim GTNN cua bieu thuc
A=9x2+6x-7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3 x^2 - 6x - 1
= 3 ( x^2 - 2x - 1/3 )
= 3 ( x^2 - 2x + 1 - 4/3)
= 3 [ ( x- 1 )^2 - 4/3)
=3 ( x- 1 )^2 - 4
Vì 3 ( x- 1 )^2 >=0 => 3 ( x- 1 )^2 - 4 >= 4
VẬy GTNN là 4 khi x- 1 = 0 => x = 1
b ) ( x- 1 )( x +2 )( x+ 3 )( x+6 )
= ( x - 1 )( x+ 6 )( x+ 2 )( x+ 3 )
= ( x^2 + 5x - 6 ) . ( x^2 + 5x + 6 )
Đặt x^2 + 5x = t ta có :
= ( t- 6 )( t+ 6 )
= t^2 - 36
Vì t^2 >=0 => t^2 -36 >= -36
VẬy GTNN là -36 khi x ^2 + 5x = 0 => x = 0 hoặc x = 5
Nhớ ****
Ta có: \(A=4x^2+12x+9-1\)
<=> \(A=\left(2x+3\right)^2-1\)
<=> \(A=\left(2x+3-1\right)\left(2x+3+1\right)\)
<=> \(A=\left(2x+2\right)\left(2x+4\right)\)
<=> \(A=4\left(x+1\right)\left(x+2\right)\ge4.1.2=8\)
Vậy Amin = 8 khi x=0
trần gia bảo bái phục bái phục!
Lời giải
Tự c/m: \(\left(a+b\right)^2=a^2+2ab+b^2\) (phân tích thành (a+b) . (a+b) rồi phá tung cái ngoặc ra)
Ta có: \(A=4\left(x^2+3x+2\right)\) (đặt thừa số chung)
\(=4\left[x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+2\right]\)
\(=4\left[\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\right]=4\left(x+\frac{3}{2}\right)^2-1\ge-1\) (do \(\left(x+\frac{3}{2}\right)^2\ge0\))
Dấu "=" xảy ra khi x + 3/2 = 0 tức là x = -3/2
Vậy Min (GTNN) A = -1 khi và chỉ khi x = -3/2
Ta có: \(A=\left|x-2\right|+\left|x-10\right|=\left|x-2\right|+\left|10-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A\ge\left|x-2+10-x\right|=\left|-8\right|=8\)
Dấu " = " khi \(\left\{{}\begin{matrix}x-2\ge0\\10-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge2\\x\le10\end{matrix}\right.\Rightarrow2\le x\le10\)
Vậy \(MIN_A=8\) khi \(2\le x\le10\)
Ta có :
A = 2x2 - 10x + 11
= 2( x2 - 2.x.\(\frac{5}{2}\) + \(\frac{25}{4}\) ) - \(\frac{3}{2}\)
= 2(x - \(\frac{5}{2}\))2 - \(\frac{3}{2}\)
Ta có :
(x - \(\frac{5}{2}\))2 \(\ge0\)
<=> 2(x - \(\frac{5}{2}\))2 \(\ge0\)
<=> 2(x - \(\frac{5}{2}\))2 - \(\frac{3}{2}\) \(\ge-\frac{3}{2}\)
Vậy Amin = - \(\frac{3}{2}\) [ Khi (x - \(\frac{5}{2}=0=>x=\frac{5}{2}\))
x - 4√x - 7 ( ĐKXĐ : x ≥ 0 ) ( x2 không tính được nha :)) )
= [ ( √x )2 - 2.2.√x + 4 ] - 11
= ( √x - 2 )2 - 11
( √x - 2 )2 ≥ 0 ∀ x ≥ 0 => ( √x - 2 )2 - 11 ≥ -11 ∀ x ≥ 0
Đẳng thức xảy ra <=> √x - 2 = 0
<=> √x = 2
<=> x = 4 ( bình phương hai vế và tmđk )
=> GTNN của biểu thức = -11 <=> x = 4
\(A=9x^2+6x-7\)
\(\Rightarrow A=\left(3x\right)^2+2\cdot3x+1-8\)
\(\Rightarrow A=\left(3x+1\right)^2-8\ge-8\)
Vậy GTNN của A là -8
A\(=9x^2+6x-7\)
\(=9\left(x^2+\dfrac{2}{3}x-\dfrac{7}{9}\right)\)
\(=9\left(x^2+2.x.\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{-8}{9}\right)\)
\(=9\left(x+\dfrac{1}{3}\right)^2+\left(-8\right)\)
Vì \(\left(x+\dfrac{1}{3}\right)^2\ge0\)
\(\Rightarrow\left(x+\dfrac{1}{3}\right)^2+\left(-8\right)\ge-8\)
Dấu = xảy ra khi x+\(\dfrac{1}{3}=0\Rightarrow x=\dfrac{-1}{3}\)
Vậy GTNN của A=-8 khi x=\(\dfrac{-1}{3}\)