chứng minh (5^100+5^98) chia hết cho 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^{100}+5^{98}=5^{98}\left(5^2+1\right)=5^{98}.26\)
Vì \(26⋮13\) nên \(5^{100}+5^{98}⋮13\)
a. 5100 - 599 + 598
= 598.(52 - 5 + 1)
= 598.(25 - 5 + 1)
= 598.21
= 598.3.7 chia hết cho 7
Vậy 5100 - 599 + 598 chia hết cho 7 (Đpcm).
b. 729 + 728 - 727
= 727.(72 + 7 - 1)
= 727.(49 + 7 - 1)
= 727.55
= 727.5.11 chia hết cho 11
Vậy 729 + 728 - 727 chia hết cho 11 (Đpcm).
a. 5100 - 599 + 598
= 598.(52 - 5 + 1)
= 598.(25 - 5 + 1)
= 598.21
= 598.3.7 chia hết cho 7
Vậy 5100 - 599 + 598 chia hết cho 7 (Đpcm).
b. 729 + 728 - 727
= 727.(72 + 7 - 1)
= 727.(49 + 7 - 1)
= 727.55
= 727.5.11 chia hết cho 11
Vậy 729 + 728 - 727 chia hết cho 11 (Đpcm).
a) \(10^5=\left(5\cdot2\right)^5⋮5\)
35 chia hết cho 5 nên biểu thức trên đúng
b) Như bài trên \(10^5⋮5\)
Mà 98 không chia hết cho 5
=> biểu thức trên chia hết cho 2
c) \(10^{100}+10^{100}+10\)
\(=2\left(10^{100}\right)+10\)
Biểu thức trên chia hết cho cả 2 và 5
a) Ta có :105 + 35 = 5(104 . 2 + 7)
đpcm
b) Vì 105 chia hết cho 5 và 2, mà 98 chia hết cho 2 nhưng ko chia hết cho 5(đpcm)
c)Ta có: 10100+10100+10 = 10(1099+1099+1) =2.5(....)
đpcm
mink làm thế thôi banh thấy đúng thì tốt rùi (vì mink đang rảnh)
dễ mà bạn bạn cứ nhóm 3số đầu tiên vào roi cu tiep tuc 3 so nhu vay
se duoc : (1+3+3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100)
=(1+3+3^2)+3^3.(1+3+3^2)+...+3 ^98.(1+3+3^2)
=13.3^3.13+...+3^98.13=13.(1+3^3+...+3^98) chia hết cho 13
vậy M chia hết cho 13
tick cho mình nhé!
M=1+3+3^2+3^3+...+3^98+3^99+3^100
M=(1+3+ 3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100)
M=(1+3+3^2)+3^3x(1+3+3^2)+...+3^98x(1+3+3^2)
M=13x3^3x13+...+3^98x13
=> 13x(1+3+3^3+...+3^98)chia hết cho 13
Vậy M chia hết cho 13
HT
*Sửa đề*
M = 1 + 3 + 32 +....+ 3100
M = ( 1 + 3 + 32) + (33 + 34 + 35) + ... + (398 + 399 + 3100)
M = (1 + 3 + 32) + 33(1 + 3 + 32) + .... + 398.(1 + 3 + 32)
M = 13 . 1 + 13 . 33+ ...... + 13 . 398
M = 13 . ( 1 + 33 +....+ 398)
=> M chia hết cho 13
A=5+52+...+599+5100
=(5+52)+...+(599+5100)
=5.(1+5)+...+599.(1+5)
=5.6+...+599.6
=6.(5+...+599) chia hết cho 6 (dpcm)
Ccá câu khcs bạn cứ dựa vào câu a mà làm vì cách làm tương tự chỉ hơi khác 1 chút thôi
Chúc bạn học giỏi nha!!
\(A=5+5^2+5^3+...+5^{100}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...\left(5^{99}+5^{100}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)
\(=5.6+5^3.6+...+5^{99}.6\)
\(=6\left(5+5^3+...+5^{99}\right)⋮6\)(đpcm)
\(B=2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=2.31+...+2^{96}.31\)
\(=31\left(2+...+9^{96}\right)⋮31\)(đpcm)
\(C=3+3^2+3^3+...+3^{60}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{59}\left(1+3\right)\)
\(=3.4+3^3.4+...+3^{59}.4\)
\(=4\left(3+3^3+...+3^{59}\right)⋮4\)(đpcm)
\(C=3+3^2+3^3+...+3^{60}\)
\(=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)
\(=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)
\(=3.13+...+3^{58}.13\)
\(=13\left(3+...+3^{58}\right)⋮13\)(đpcm)
1)
a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)
Vì \(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)
\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)
\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)
\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)
Vì \(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)
\(5^{100}+5^{98}=5^{98}\left(5^2+1\right)=5^{98}.26=5^{28}.13.2\)
Vậy....
5100 + 598 = 598(52 + 1)
= 598 . 26
= 598.2.13 chia hết cho 13 ( vì 598.2 \(\in\) Z