K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2018

undefined

29 tháng 6 2018

thanks

13 tháng 3 2021

b, pt \(\Leftrightarrow\)mx - 2=0 

Nếu m=0 pt\(\Leftrightarrow\) -2=0 (vô lí)\(\Rightarrow\)m=2(loại)

Nếu m\(\ne\)0 pt có nghiệm x=\(\dfrac{2}{m}\)

 

 

 

 

13 tháng 3 2021

undefinedBạn tham khảo nhé

 

22 tháng 6 2017

1) \(\dfrac{2}{15}\cdot6\dfrac{5}{11}+\dfrac{5}{11}\cdot\dfrac{-2}{15}-\dfrac{2}{15}\cdot2015^0\)

\(=\dfrac{2}{15}\cdot\dfrac{71}{11}-\dfrac{1}{11}\cdot\dfrac{2}{3}-\dfrac{2}{15}\cdot1\)

\(=\dfrac{142}{165}-\dfrac{2}{33}-\dfrac{2}{15}\)

\(=\dfrac{2}{3}\)

2) \(\dfrac{5}{2\cdot7}+\dfrac{3}{14\cdot11}+\dfrac{4}{11\cdot7}+\dfrac{1}{14\cdot15}+\dfrac{13}{15\cdot16}\)

\(=\dfrac{5}{14}+\dfrac{3}{154}+\dfrac{4}{77}+\dfrac{1}{210}+\dfrac{13}{240}\)

\(=\dfrac{39}{80}\)

22 tháng 6 2017

thanks bạn nhìu nhé

9 tháng 1 2022

Chọn B. Thay \(\dfrac{1}{3}\)vào x và \(\dfrac{1}{2}\)vào y 

giải để ra được m

9 tháng 1 2022

Phương trình : 

y= x-m 

ta có M:( \(\dfrac{1}{3}\)\(\dfrac{1}{2}\))

=> \(\dfrac{1}{3}\)\(\dfrac{1}{2}\)- m

=> m = \(\dfrac{1}{3}\)\(\dfrac{1}{2}\)

=> m= -\(\dfrac{1}{6}\)

12 tháng 9 2021

\(a,M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{2}{x}-\dfrac{2-x}{x\sqrt{x}+x}\right)\left(x>0;x\ne1\right)\\ M=\dfrac{x+\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{2\sqrt{x}+2-2+x}{x\left(\sqrt{x}+1\right)}\\ M=\dfrac{2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{x\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\\ M=\dfrac{2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(b,M=-\dfrac{1}{2}\Leftrightarrow\dfrac{2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=-\dfrac{1}{2}\\ \Leftrightarrow-4x=x+\sqrt{x}-2\\ \Leftrightarrow5x+\sqrt{x}-2=0\)

Đặt \(\sqrt{x}=t\)

\(\Leftrightarrow5t^2+t-2=0\\ \Delta=1^2-4\cdot5\left(-2\right)=41\\ \Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-1-\sqrt{41}}{10}\\t=\dfrac{-1+\sqrt{41}}{10}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\left(1+\sqrt{41}\right)^2}{100}=\dfrac{-42-2\sqrt{41}}{100}\\x=\dfrac{\left(\sqrt{41}-1\right)^2}{100}=\dfrac{42-2\sqrt{41}}{100}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-21-\sqrt{41}}{50}\left(L\right)\\x=\dfrac{21-\sqrt{41}}{50}\left(N\right)\end{matrix}\right.\\ \Leftrightarrow x=\dfrac{21-\sqrt{41}}{50}\)

a: Ta có: \(M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{2}{x}+\dfrac{x-2}{x\sqrt{x}+x}\right)\)

\(=\dfrac{x+\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{2\sqrt{x}+2+x-2}{x\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2x}{\sqrt{x}-1}\cdot\dfrac{x}{\sqrt{x}\left(\sqrt{x}+2\right)}\)

\(=\dfrac{2x\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

19 tháng 12 2018

a) \(\dfrac{x+3}{x-3}-\dfrac{x-3}{x+3}=\dfrac{36}{x^2-9}\)

\(\Rightarrow\dfrac{\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{36}{\left(x-3\right)\left(x+3\right)}\)

\(\Rightarrow\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}=\dfrac{36}{\left(x-3\right)\left(x+3\right)}\)

\(\Rightarrow\dfrac{\left(x+3\right)^2-\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}=\dfrac{36}{\left(x-3\right)\left(x+3\right)}\)

\(\Rightarrow\left(x+3\right)^2-\left(x-3\right)^2=36\)

\(\Rightarrow\left(x^2+6x+9\right)-\left(x^2-6x+9\right)=36\)

\(\Rightarrow x^2+6x+9-x^2+6x-9=36\)

\(\Rightarrow12x=36\)

\(\Rightarrow x=\dfrac{36}{12}\)

Vậy x = 3

b) \(x^2-x-6=0\)

\(\Rightarrow x^2-3x+2x-6=0\)

\(\Rightarrow x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

c) \(\dfrac{2x-1}{5}-\dfrac{x-2}{3}=\dfrac{x+17}{15}\)

\(\Rightarrow\dfrac{3\left(2x-1\right)}{15}-\dfrac{5\left(x-2\right)}{15}=\dfrac{x+17}{15}\)

\(\Rightarrow\dfrac{3\left(2x-1\right)-5\left(x-2\right)}{15}=\dfrac{x+17}{15}\)

\(\Rightarrow\dfrac{6x-3-5x+10}{15}=\dfrac{x+17}{15}\)

... Phần còn lại cũng tương tự như vậy thôi

12 tháng 3 2022

a)4/5+x=2/3

x=2/3-4/5

x=-2/15

b)-5/6-x=2/3

x=-5/6-2/3

x=-3/2

c)1/2x+3/4=-3/10

1/2x=-3/10-3/4

1/2x=-21/20

x=-21/20:1/2

x=-21/10

d)x/3-1/2=1/5

x/3=1/5+1/2

x/3=7/10

10x/30=21/30

10x=21

x=21:10

x=21/10

`#3107`

a)

\(\dfrac{11}{12}-\left(\dfrac{2}{5}+\dfrac{3}{4}x\right)=\dfrac{2}{3}?\\ \Rightarrow\dfrac{2}{5}+\dfrac{3}{4}x=\dfrac{11}{12}-\dfrac{2}{3}\\ \Rightarrow\dfrac{2}{5}+\dfrac{3}{4}x=\dfrac{1}{4}\\ \Rightarrow\dfrac{3}{4}x=\dfrac{1}{4}-\dfrac{2}{5}\\ \Rightarrow\dfrac{3}{4}x=-\dfrac{3}{20}\\ \Rightarrow x=-\dfrac{3}{20}\div\dfrac{3}{4}\\ \Rightarrow x=-\dfrac{1}{5}\)

Vậy, \(x=-\dfrac{1}{5}\)

b)

\(\dfrac{-2}{5}+\dfrac{5}{3}\cdot\left(\dfrac{3}{2}-\dfrac{4}{15}x\right)=\dfrac{-7}{6}\\ \Rightarrow\dfrac{5}{3}\cdot\left(\dfrac{3}{2}-\dfrac{4}{15}x\right)=\dfrac{-7}{6}-\dfrac{-2}{5}\\ \Rightarrow\dfrac{5}{3}\cdot\left(\dfrac{3}{2}-\dfrac{4}{15}x\right)=-\dfrac{23}{30}\\ \Rightarrow\dfrac{3}{2}-\dfrac{4}{15}x=-\dfrac{23}{30}\div\dfrac{5}{3}\\ \Rightarrow\dfrac{3}{2}-\dfrac{4}{15}x=-\dfrac{23}{50}\\ \Rightarrow\dfrac{4}{15}x=\dfrac{3}{2}-\left(-\dfrac{23}{50}\right)\\ \Rightarrow\dfrac{4}{15}x=\dfrac{49}{25}\\ \Rightarrow x=\dfrac{147}{20}\)

Vậy, \(x=\dfrac{147}{20}\)

c)

\(\dfrac{1}{2}+\dfrac{3}{4}x=\dfrac{1}{4}\\ \Rightarrow\dfrac{3}{4}x=\dfrac{1}{4}-\dfrac{1}{2}\\ \Rightarrow\dfrac{3}{4}x=-\dfrac{1}{4}\\ \Rightarrow x=-\dfrac{1}{4}\div\dfrac{3}{4}\\ \Rightarrow x=-\dfrac{1}{3}\)

Vậy, \(x=-\dfrac{1}{3}.\)

\(#Emyeu1aithatroi...\)

29 tháng 9 2023

(2/5 + 3/4 . x)= 11/12 -2/3

(2/5 +3/4 . x)= 1/4

3/4 . x          = 1/4 - 2/5

3/4 . x          = -3/20

x                  = -3/20 : 3/4

x                  = -1/5

Vậy .....

a: Ta có: \(M=\dfrac{A}{B}\)

\(=\dfrac{x-3}{x+2}:\dfrac{-2}{x+2}\)

\(=\dfrac{x-3}{-2}\)

Để |M|=-M thì \(M\le0\)

\(\Leftrightarrow x\ge3\)