Tìm giá trị nhỏ nhất của biểu thức sau :
A= căn bậc 9x^2 - 6x +1 + căn bậc 25-30x+9x^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(x^2\ge0;\forall x\)
\(\Rightarrow\sqrt{x^2+9}-2025\ge\sqrt{0+9}-2025=-2022\)
C là đáp án đúng
a) \(\sqrt[]{x^2-4x+4}=x+3\)
\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)
\(\Leftrightarrow\left|x-2\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)
\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)
b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)
\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)
\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)
\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)
Giải pt (1)
\(\Delta=9+32=41>0\)
Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)
Giải pt (2)
\(\Delta=9+48=57>0\)
Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)
Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)
\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
\(A=\sqrt{1^2-2\cdot3x\cdot1+\left(3x\right)^2}+\sqrt{\left(3x\right)^2-2\cdot2\cdot3x+2^2}\)
\(A=\sqrt{\left(1-3x\right)^2}+\sqrt{\left(3x-2\right)^2}\)
\(A=\left|1-3x\right|+\left|3x-2\right|\)
\(A=\left|1-3x+3x-2\right|\)
\(A=\left|-1\right|=1\)
Dấu "=" xảy ra \(\left(1-3x\right)\left(3x-2\right)\ge0\)
\(\Rightarrow\dfrac{1}{3}\le x\le\dfrac{2}{3}\)
Vậy: \(A_{min}=1\) khi \(\dfrac{1}{3}\le x\le\dfrac{2}{3}\)
\(\sqrt{16x}-2\sqrt{36x}+3\sqrt{9x}=2\left(x\ge0\right)\)
\(\Leftrightarrow\sqrt{4^2\cdot x}-2\sqrt{6^2\cdot x}+3\sqrt{3^2x}=2\)
\(\Leftrightarrow4\sqrt{x}-2\cdot6\sqrt{x}+3\cdot3\sqrt{x}=2\)
\(\Leftrightarrow4\sqrt{x}-12\sqrt{x}+9\sqrt{x}=2\)
\(\Leftrightarrow\sqrt{x}=2\)
\(\Leftrightarrow x=2^2\)
\(\Leftrightarrow x=4\left(tm\right)\)
\(9x^2-6x+2=\left(3x-1\right)^2+1=t\ge1\)
\(Pt\Rightarrow\sqrt{t}+\sqrt{5t-1}=\sqrt{10-t}\)
\(\Leftrightarrow5t-1=10-t+t-2\sqrt{t\left(10t-1\right)}\)
\(\Leftrightarrow2\sqrt{t\left(10t-1\right)}+5t=11\)
\(\Rightarrow VT\ge VP\left(t\ge1\right)\Rightarrow t=1\Rightarrow x=\frac{1}{3}\)
\(\sqrt{9x^2-6x+1}+\sqrt{25-30+9x^2}\)
=\(\sqrt{\left(3x-1\right)^2}+\sqrt{\left(5-3x\right)^2}\)
=|3x-1|+|5-3x| ≥ |3x-1+5-3x|
<=> |3x-1|+|5-3x| ≥ |4|
=> Min A =4 khi (3x-1)(5-3x) ≥ 0
ta có bảng
x 3x-1 5-3x tích 1/3 5/3 0 0 - + + - - + + - +
=> x ≤ 1/3 hoặc x ≥ 5/3
vậy .....
này gọi là xét dấu đúng hong ạ !