Giải phương trình trên tập hợp N* : 3x5-19(72x-y)2=240677
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(72x-\sqrt{\frac{3x^{^5}-240677}{19}}hay72x+\sqrt{\frac{3x^{^5}-240677}{19}}\). Suy ra: \(x\ge10\). Ghi vào màn hình:
\(A=A+1:B=72A-\sqrt{\frac{3A^{^5}-240677}{19}}:C=72A+\sqrt{\frac{3X^{^5}-240677}{19}}\). Cho A=9, rồi chạy để tìm kết quả.
\(pt\Leftrightarrow\left[\left(x-4\right)\left(x-10\right)\right]\left[\left(x-5\right)\left(x-8\right)\right]=72x^2\)
\(\Leftrightarrow\left(x^2+40-14x\right)\left(x^2+40-13x\right)=72x^2\)
\(x=0\) không phải là nghiệm của phương trình trên
Xét \(x\ne0\)
\(pt\Leftrightarrow\frac{x^2+40-14x}{x}.\frac{x^2+40-13x}{x}=72\)
\(\Leftrightarrow\left(x+\frac{40}{x}-14\right)\left(x+\frac{40}{x}-13\right)=72\)
Đặt \(x+\frac{40}{x}-14=a\)
\(pt\rightarrow a\left(a+1\right)=72\Leftrightarrow a^2+a-72=0\Leftrightarrow\orbr{\begin{cases}a=8\\a=-9\end{cases}}\)
TH1: a = 8 \(\Rightarrow x+\frac{40}{x}-14=8\Leftrightarrow\frac{x^2-22x+40}{x}=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=20\end{cases}}\)
TH2: a = -9 \(\Rightarrow x+\frac{40}{x}-14=-9\Leftrightarrow\frac{x^2-5x+40}{x}=0\text{ }\left(\text{vô nghiệm }\right)\)
Bài này có trong báo THTT và đang trong thời hạn giải nên mình nghĩ bạn không nên đăng hỏi.
Với lại bài này có số mũ thực nên không thể là bài lớp 9.
Với lớp 12 thì đây là 1 bài toán rất dễ
Nhưng lớp 9 thì nan giải :D