K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2018

Để có cho sẵn điều kiện ko bn? Bài này nếu đặt điều kiện x > 0 thì chưa hợp lí lắm ...

24 tháng 6 2021

a) đk: \(x\ne0;4\)\(x>0\)

P = \(\left[\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{1}{\sqrt{x}-2}\right]\times\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)

\(\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\times\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)

\(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-2\right)}.\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

b) Để P < \(\dfrac{1}{2}\)

<=> \(\dfrac{\sqrt{x}-1}{\sqrt{x}}< \dfrac{1}{2}\)

<=> \(1-\dfrac{1}{\sqrt{x}}< \dfrac{1}{2}\)

<=> \(\dfrac{1}{\sqrt{x}}>\dfrac{1}{2}\)

<=> \(\sqrt{x}< 2\)

<=> x < 4

<=> 0 < x < 4

24 tháng 6 2021

thanks.

7 tháng 10 2021

\(a,E=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\dfrac{x-1+\sqrt{x}+2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\left(x>0;x\ne1\right)\\ E=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}=\dfrac{x}{\sqrt{x}-1}\\ b,E>1\Leftrightarrow\dfrac{x-\sqrt{x}+1}{\sqrt{x}-1}>0\\ \Leftrightarrow\sqrt{x}-1>0\left[x-\sqrt{x}+1=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\right]\\ \Leftrightarrow x>1\left(tm\right)\)

\(c,E=\dfrac{x}{\sqrt{x}-1}=\dfrac{x-1+1}{\sqrt{x}-1}=\sqrt{x}+1+\dfrac{1}{\sqrt{x}-1}\\ E=\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}+2\ge2\sqrt{\dfrac{\sqrt{x}-1}{\sqrt{x}-1}}+2=2+2=4\\ E_{min}=4\Leftrightarrow\sqrt{x}-1=1\Leftrightarrow x=4\)

24 tháng 6 2021

a) đk: x\(\ge0\);

P = \(\left[\dfrac{x+2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}+1}\right].\dfrac{4\sqrt{x}}{3}\)

\(\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}.\dfrac{4\sqrt{x}}{3}\)

\(\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}.\dfrac{4\sqrt{x}}{3}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

b) Để P = \(\dfrac{8}{9}\)

<=> \(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{8}{9}\)

<=> \(\dfrac{\sqrt{x}}{x-\sqrt{x}+1}=\dfrac{2}{3}\)

<=> \(\dfrac{3\sqrt{x}-2x+2\sqrt{x}-2}{3\left(x-\sqrt{x}+1\right)}=0\)

<=> \(-2x+5\sqrt{x}-2=0\)

<=> \(\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)

<=> \(\left[{}\begin{matrix}x=4\left(tm\right)\\x=\dfrac{1}{4}\left(tm\right)\end{matrix}\right.\)

c)

Đặt \(\sqrt{x}=a\) (\(a\ge0\))

P = \(\dfrac{4a}{3\left(a^2-a+1\right)}\)

Xét P + \(\dfrac{4}{9}\) = \(\dfrac{4a}{3a^2-3a+3}+\dfrac{4}{9}=\dfrac{12a+4a^2-4a+4}{9\left(a^2-a+1\right)}=\dfrac{4a^2+8a+4}{9\left(a^2-a+1\right)}=\dfrac{4\left(a+1\right)^2}{9\left(a^2-a+1\right)}\ge0\)

Dấu "=" <=> a = -1 (loại)

=> Không tìm được Min của P

Xét P - \(\dfrac{4}{3}\) = \(\dfrac{4a}{3\left(a^2-a+1\right)}-\dfrac{4}{3}=\dfrac{4a-4a^2+4a-4}{3\left(a^2-a+1\right)}=\dfrac{-4a^2+8a-4}{3\left(a^2-a+1\right)}=\dfrac{-4\left(a-1\right)^2}{3\left(a^2-a+1\right)}\le0\)

<=> \(P\le\dfrac{4}{3}\)

Dấu "=" <=> a = 1 <=> x = 1 (tm)

24 tháng 6 2021

Ai bảo cậu là không tìm được minP vậy?

a: ĐKXĐ: x>=0; x<>1

b: \(P=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{2}\)

\(=\dfrac{x-\sqrt{x}-2-\left(x+\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{2}\)

\(=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\cdot\dfrac{\sqrt{x}-1}{2}\)

\(=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2}\)

c: Để P>0 thì \(\sqrt{x}-1< 0\)

=>0<x<1

15 tháng 5 2021

tự làm đi

AH
Akai Haruma
Giáo viên
29 tháng 9 2017

Lời giải:
Áp dụng BĐT Cauchy-Schwarz:

\(A^2=\left ( \frac{1}{\sqrt{x+y+1}}+\frac{1}{\sqrt{y+z+1}+\frac{1}{\sqrt{z+x+1}}} \right )^2\leq (1+1+1)\left(\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\right)\)

\(\Leftrightarrow A^2\leq 3\underbrace{\left(\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\right)}_{M}\) \((1)\)

Xét M

Do $xyz=1$ nên tồn tại các số $a,b,c>0$ sao cho \((x,y,z)=\left(\frac{a^2}{bc},\frac{b^2}{ac},\frac{c^2}{ab}\right)\)

Khi đó \(M=\frac{abc}{a^3+b^3+abc}+\frac{abc}{b^3+c^3+abc}+\frac{abc}{c^3+a^3+abc}\)

Với \(a,b>0\) ta luôn có BĐT sau: \(a^3+b^3\geq ab(a+b)\)

BĐT này luôn đúng vì tương đương với \((a+b)(a-b)^2\geq 0\)

Do đó, \(a^3+b^3+abc\geq ab(a+b)+abc=ab(a+b+c)\)

\(\Rightarrow \frac{abc}{a^3+b^3+abc}\leq \frac{abc}{ab(a+b+c)}=\frac{c}{a+b+c}\)

Thiết lập tương tự với các phân thức còn lại suy ra

\(M\leq \frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=1\Rightarrow 3M\leq 3\) \((2)\)

Từ \((1),(2)\Rightarrow A^2\leq 3\Leftrightarrow A\leq \sqrt{3}\Rightarrow A_{\max}=\sqrt{3}\)

Dấu bằng xảy ra khi \(x=y=z=1\)

AH
Akai Haruma
Giáo viên
7 tháng 1 2019

Lời giải:

Câu a:

Áp dụng BĐT Cô-si ngược dấu ta có:

\(\sqrt{3(x-3)}\leq \frac{3+(x-3)}{2}=\frac{x}{2}\)

\(\Rightarrow \sqrt{x-3}\leq \frac{x}{2\sqrt{3}}\Rightarrow \frac{\sqrt{x-3}}{x}\leq \frac{1}{2\sqrt{3}}\)

Hoàn toàn tương tự: \(\frac{\sqrt{y-3}}{y}\leq \frac{1}{2\sqrt{3}}\)

\(\Rightarrow p=\frac{\sqrt{x-3}}{x}+\frac{\sqrt{y-3}}{y}\leq \frac{1}{2\sqrt{3}}+\frac{1}{2\sqrt{3}}=\frac{\sqrt{3}}{3}\)

Dấu "=" xảy ra khi \(3=x-3; 3=y-3\Rightarrow x=y=6\)

Vậy \(p_{\max}=\frac{\sqrt{3}}{3}\Leftrightarrow x=y=6\)

Câu b: Các phân thức của $q$ là nghịch đảo của $p$ nên $q$ có min thôi em nhé. Nếu tìm min thì tương tự như câu a.

8 tháng 1 2019

dạ

AH
Akai Haruma
Giáo viên
30 tháng 9 2023

Đề mắc lỗi hiển thị rồi. Bạn xem lại.