Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x^3+8}{x^2+2x+1}.\dfrac{x^2+3x+2}{1-x^2}\left(x\ne\pm1\right)\\ =\dfrac{x^3+2^3}{\left(x+1\right)^2}.\dfrac{\left(x^2+x\right)+\left(2x+2\right)}{1^2-x^2}\\ =\dfrac{\left(x+2\right)\left(x^2-2x+4\right)}{\left(x+1\right)^2}.\dfrac{x\left(x+1\right)+2\left(x+1\right)}{\left(1-x\right)\left(1+x\right)}\\ =\dfrac{\left(x+2\right)\left(x^2-2x+4\right)}{\left(x+1\right)^2}.\dfrac{\left(x+2\right)\left(x+1\right)}{\left(1-x\right)\left(x+1\right)}\\ =\dfrac{\left(x+2\right)^2\left(x^2-2x+4\right)}{\left(1-x\right)\left(x+1\right)^2}\)
3 x 6 + 3 x 70 + 24 x 3
= 3 x (6 + 70 + 24)
= 3 x 100
= 300
3 x 6 + 3 x 70 + 24 x 3
= 3 x (6 + 70 + 24)
= 3 x 100 = 300
\(\dfrac{1}{2}\left(x-2\right)+\dfrac{1}{3}\left(2-x\right)=x\\ \Leftrightarrow\dfrac{1}{2}\left(x-2\right)-\dfrac{1}{3}\left(x-2\right)=x\\ \Leftrightarrow\left(x-2\right).\left(\dfrac{1}{2}-\dfrac{1}{3}\right)=x\\ \Leftrightarrow\left(x-2\right).\left(\dfrac{3-2}{6}\right)=x\\ \Leftrightarrow\left(x-2\right).\dfrac{1}{6}=x\\ \Leftrightarrow\dfrac{1}{6}x-\dfrac{1}{3}-x=0\\ \Leftrightarrow\left(\dfrac{1}{6}-1\right)x=\dfrac{1}{3}\\ \Leftrightarrow\left(\dfrac{1-6}{6}\right)x=\dfrac{1}{3}\\ \Leftrightarrow\dfrac{-5}{6}x=\dfrac{1}{3}\\ \Leftrightarrow x=\dfrac{1}{3}:\left(-\dfrac{5}{6}\right)\\ \Leftrightarrow x=-\dfrac{2}{5}\)
Vậy \(x=-\dfrac{2}{5}\)
Lời giải:
$\frac{x^3+8}{x^2-2x+1}.\frac{x^2+3x+2}{1-x^2}=\frac{(x^3+8)(x^2+3x+2)}{(x^2-2x+1)(1-x^2)}$
$=\frac{(x+2)(x^2-2x+4)(x+1)(x+2)}{(x-1)^2(1-x)(x+1)}$
$=\frac{(x+2)^2(x^2-2x+4)}{-(x-1)^3}$
\(3^{x+1}-2.3^x=243\\ \Rightarrow3^x.3-2.3^x=243\\ \Rightarrow3^x=3^5\\ \Rightarrow x=5\)
\(x\cdot\dfrac{3}{7}-x\cdot\dfrac{1}{2}=\dfrac{3}{5}\)
\(x\left(\dfrac{3}{7}-\dfrac{1}{2}\right)=\dfrac{3}{5}\)
\(x\cdot\dfrac{-1}{14}=\dfrac{3}{5}\)
\(x=\dfrac{3}{5}:\dfrac{-1}{14}\)
\(x=\dfrac{-42}{5}\)
TL:
X có thể bằng : 1
Tính lại : 1 + 11 = 12 ; 1 + 1 = 2
12 chia hết cho 2
HT
sao ko ai giúp mik vậy , mik đang cần rất gấp cái này
\(\dfrac{x^2+3x-4}{x-1}=\dfrac{x^2+4x-x-4}{\left(x-1\right)}=\dfrac{\left(x+4\right)\left(x-1\right)}{x-1}=x+4\)