GTLN của A=\(\sqrt{x-1}-\sqrt{x-8}\)
GTNN của B=\(\sqrt{x-3}+\sqrt{5-x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) ĐKXĐ: \(x\geq 8\)
\(A=\sqrt{x+1}-\sqrt{x-8}=\frac{9}{\sqrt{x+1}+\sqrt{x-8}}\). Mà:
\(\sqrt{x+1}+\sqrt{x-8}=\sqrt{(\sqrt{x+1}+\sqrt{x-8})^2}=\sqrt{2x-7+2\sqrt{(x+1)(x-8)}}\)
\(\geq \sqrt{2.8-7+2.0}=3\) với mọi $x\geq 8$
Do đó: \(A=\frac{9}{\sqrt{x+1}+\sqrt{x-8}}\leq \frac{9}{3}=3\)
Vậy \(A_{\max}=3\Leftrightarrow x=8\)
b) ĐKXĐ: \(3\leq x\leq 5\)
\(B=\sqrt{x-3}+\sqrt{5-x}=\sqrt{(\sqrt{x-3}+\sqrt{5-x})^2}=\sqrt{2+2\sqrt{(x-3)(5-x)}}\)
\(\geq \sqrt{2+2.0}=\sqrt{2}, \forall 3\leq x\leq 5\)
Vậy \(B_{\min}=\sqrt{2}\Leftrightarrow 3\leq x\leq 5\)
\(A\le\sqrt{\left(3^2+4^2\right)\left(x-1\right)\left(5-x\right)}=10\)
\(A_{max}=10\) khi \(\dfrac{\sqrt{x-1}}{3}=\dfrac{\sqrt{5-x}}{4}\Rightarrow x=\dfrac{61}{25}\)
\(A=3\left(\sqrt{x-1}+\sqrt{5-x}\right)+\sqrt{5-x}\ge3\left(\sqrt{x-1}+\sqrt{5-x}\right)\ge3\sqrt{x-1+5-x}=6\)
\(A_{min}=6\) khi \(x=5\)
Câu 1:
Tìm max:
Áp dụng BĐT Bunhiacopxky ta có:
\(y^2=(3\sqrt{x-1}+4\sqrt{5-x})^2\leq (3^2+4^2)(x-1+5-x)\)
\(\Rightarrow y^2\leq 100\Rightarrow y\leq 10\)
Vậy \(y_{\max}=10\)
Dấu đẳng thức xảy ra khi \(\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{4}\Leftrightarrow x=\frac{61}{25}\)
Tìm min:
Ta có bổ đề sau: Với $a,b\geq 0$ thì \(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)
Chứng minh:
\(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)
\(\Leftrightarrow (\sqrt{a}+\sqrt{b})^2\geq a+b\)
\(\Leftrightarrow \sqrt{ab}\geq 0\) (luôn đúng).
Dấu "=" xảy ra khi $ab=0$
--------------------
Áp dụng bổ đề trên vào bài toán ta có:
\(\sqrt{x-1}+\sqrt{5-x}\geq \sqrt{(x-1)+(5-x)}=2\)
\(\sqrt{5-x}\geq 0\)
\(\Rightarrow y=3(\sqrt{x-1}+\sqrt{5-x})+\sqrt{5-x}\geq 3.2+0=6\)
Vậy $y_{\min}=6$
Dấu "=" xảy ra khi \(\left\{\begin{matrix} (x-1)(5-x)=0\\ 5-x=0\end{matrix}\right.\Leftrightarrow x=5\)
Bài 2:
\(A=\sqrt{(x-1994)^2}+\sqrt{(x+1995)^2}=|x-1994|+|x+1995|\)
Áp dụng BĐT dạng \(|a|+|b|\geq |a+b|\) ta có:
\(A=|x-1994|+|x+1995|=|1994-x|+|x+1995|\geq |1994-x+x+1995|=3989\)
Vậy \(A_{\min}=3989\)
Đẳng thức xảy ra khi \((1994-x)(x+1995)\geq 0\Leftrightarrow -1995\leq x\leq 1994\)
a . ta có : \(1\le1+\sqrt{2-x}\Rightarrow GTNN=1\)
\(-2\le\sqrt{x-3}-2\Rightarrow GTNN=-2\)
b. \(0\le\sqrt{4-x^2}\le2\)
\(\sqrt{2x^2-x+3}=\sqrt{2\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{23}{8}}=\sqrt{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge\frac{\sqrt{46}}{4}\)
vậy \(GTNN=\frac{\sqrt{46}}{4}\)
ta có : \(0\le-x^2+2x+5=-\left(x-1\right)^2+6\le6\)
\(\Rightarrow1-\sqrt{6}\le1-\sqrt{-x^2+2x+5}\le1\)Vậy \(\hept{\begin{cases}GTNN=1-\sqrt{6}\\GTLN=1\end{cases}}\)
1:
a: \(A=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)
căn x+1>=1
=>2/căn x+1<=2
=>-2/căn x+1>=-2
=>A>=-2+1=-1
Dấu = xảy ra khi x=0
b:
Lời giải:
Đặt \(\sqrt{x}=a(a\ge 0)\)
Khi đó: \(P=\frac{4a}{3(a^2-a+1)}\)
Để \(P=\frac{8}{9}\Rightarrow \frac{4a}{3(a^2-a+1)}=\frac{8}{9}\)
\(\Rightarrow \frac{a}{a^2-a+1}=\frac{2}{3}\Rightarrow 3a=2(a^2-a+1)\)
\(\Leftrightarrow 2a^2-5a+2=0\Leftrightarrow (a-2)(2a-1)=0\)
\(\Rightarrow \left[\begin{matrix} a-2=0\\ 2a-1=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} a=2=\sqrt{x}\\ a=\frac{1}{2}=\sqrt{x}\end{matrix}\right.\) \(\Rightarrow \left[\begin{matrix} x=4\\ x=\frac{1}{4}\end{matrix}\right.\) (t/m)
b)
Vì \(a\geq 0; a^2-a+1=(a-\frac{1}{2})^2+\frac{3}{4}>0\)
Do đó: \(P=\frac{4}{3}.\frac{a}{a^2-a+1}\geq \frac{4}{3}.0=0\)
Vậy \(P_{\min}=0\Leftrightarrow a=0\Leftrightarrow x=0\)
-------
Áp dụng BĐT Cô-si: \(a^2+1\geq 2a\Rightarrow a^2-a+1\geq 2a-a=a\)
\(\Rightarrow \frac{a}{a^2-a+1}\leq \frac{a}{a}=1\Rightarrow P=\frac{4}{3}.\frac{a}{a^2-a+1}\leq \frac{4}{3}.1=\frac{4}{3}\)
Vậy \(P_{\max}=\frac{4}{3}\Leftrightarrow a=1\Leftrightarrow x=1\)
Bài 2:
Đặt \(P=\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
\(=\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-\sqrt{12-4\sqrt{5}}\)
Có:
\(4+\sqrt{15}=\frac{8+2\sqrt{15}}{2}=\frac{5+3+2\sqrt{3.5}}{2}=\frac{(\sqrt{3}+\sqrt{5})^2}{2}\)
\(\Rightarrow \sqrt{4+\sqrt{15}}=\frac{\sqrt{3}+\sqrt{5}}{\sqrt{2}}\)
Tương tự: \(\sqrt{4-\sqrt{15}}=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\)
\(12-4\sqrt{5}=12-2\sqrt{20}=10+2-2\sqrt{10.2}=(\sqrt{10}-\sqrt{2})^2\)
\(\Rightarrow \sqrt{12-4\sqrt{5}}=\sqrt{10}-\sqrt{2}\)
Vậy \(P=\frac{\sqrt{3}+\sqrt{5}}{\sqrt{2}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}-(\sqrt{10}-\sqrt{2})\)
\(=\sqrt{2}\)
\(A^2=\left(2\sqrt{x-4}+\sqrt{8-x}\right)^2\le\left(2^2+1^2\right)\left(x-4+8-x\right)=20..\)
\(A\le2\sqrt{5}..\)