Giải các phương trình sau:
a) \(x-9\sqrt{x}+14=0\)
b)\(\sqrt{x^2-10x+25}=7-2x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x^2-10x+25}=7-2x=>\sqrt{\left(x-5\right)^2}=7-2x=>!x-5!=7-2x\)
\(x-5=7-2x\left(x>=5\right)=>3x=7+5=>x=4\)
\(5-x=7-2x\left(x<5\right)=>2x-x=7-5=>x=2\)
À câu a mình tự làm được rồi nhé! Các bạn chỉ cần làm câu b cho mình là được.
b, \(\frac{2\sqrt{x}}{\sqrt{x+1}}+\sqrt{x}=\sqrt{x+9}\)
ĐK \(x\ge0\)
Pt
<=> \(2\sqrt{x}+\sqrt{x\left(x+1\right)}=\sqrt{\left(x+1\right)\left(x+9\right)}\)
<=> \(4x+x^2+x+4\sqrt{x^2\left(x+1\right)}=x^2+10x+9\)
<=> \(4x\sqrt{x+1}=5x+9\)
<=> \(16x^2\left(x+1\right)=25x^2+90x+81\)với mọi \(x\ge0\)
<=> \(16x^3-9x^2-90x-81=0\)
<=> \(x=3\)(tm ĐK)
Vậy x=3
ĐKXĐ: \(x\in R\)
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
=>\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}+x^2+2x-4=0\)
\(\Leftrightarrow\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}+x^2+2x+1-5=0\)
=>\(\sqrt{3x^2+6x+7}-2+\sqrt{5x^2+10x+14}-3+\left(x+1\right)^2=0\)
=>\(\dfrac{3x^2+6x+7-4}{\sqrt{3x^2+6x+7}+2}+\dfrac{5x^2+10x+14-9}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)
=>
\(\dfrac{3x^2+6x+3}{\sqrt{3x^2+6x+7}+2}+\dfrac{5x^2+10x+5}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)
=>\(\dfrac{3\left(x^2+2x+1\right)}{\sqrt{3x^2+6x+7}+2}+\dfrac{5\left(x^2+2x+1\right)}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)
\(\Leftrightarrow\dfrac{3\left(x+1\right)^2}{\sqrt{3x^2+6x+7}+2}+\dfrac{5\left(x+1\right)^2}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)
=>\(\left(x+1\right)^2\left(\dfrac{3}{\sqrt{3x^2+6x+7}+2}+\dfrac{5}{\sqrt{5x^2+10x+14}+3}+1\right)=0\)
=>\(\left(x+1\right)^2=0\)
=>x+1=0
=>x=-1(nhận)
a/ \(\hept{\begin{cases}VT=\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge2+3=5\\VP=4-2x-x^2=5-\left(x+1\right)^2\le5\end{cases}}\)
Dấu = xảy ra khi \(x=-1\)
b/ \(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)
Đặt \(\hept{\begin{cases}\sqrt{x-2}=a\ge0\\\sqrt{4-x}=b\ge0\end{cases}}\)thì ta có
\(\hept{\begin{cases}a^2+b^2=2\\a+b=-a^2b^2+3\end{cases}}\)
Đặt \(\hept{\begin{cases}a+b=S\\ab=P\end{cases}}\) thì ta có
\(\hept{\begin{cases}S^2-2P=2\\S=3-P^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(3-P^2\right)^2-2P=2\\S=3-P^2\end{cases}}\)
Thôi làm tiếp đi làm biếng quá.
a)√3x2+6x+7+√5x2+10x+14=4−2x−x2
\(\Leftrightarrow16x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}+21\)
\(\Leftrightarrow-x^2-2x+4\)
Thế vào ta được:
\(x^2+18x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}=-17\)
\(x^2+18x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}+17=0\)
\(16x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}+21=4-x\left(x+2\right)\)
giải các phương trình a)\(\sqrt{2x-1}+x^2-3x+1=0\)
b)\(\sqrt{x-1}+\sqrt{9-x}+2\sqrt{-x^2+10x-9}=12\)
a.
\(ĐK:x\ge\frac{1}{2}\)
PT\(\Leftrightarrow-\left(2x-1-\sqrt{2x-1}+\frac{1}{4}\right)+x^2-x+\frac{1}{4}=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2-\left(\sqrt{2x-1}-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow\left(x+\sqrt{2x-1}-1\right)\left(x-\sqrt{2x-1}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\sqrt{2x-1}=1\\x=\sqrt{2x-1}\end{cases}}\)
Chắt duoc roi he
b.
\(ĐK:1\le x\le9\)
\(\Rightarrow\hept{\begin{cases}a+b+2ab=12\\a^2+b^2=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(a+b\right)^2+\left(a+b\right)-12=0\\a^2+b^2=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(a+b-3\right)\left(a+b+4\right)=0\\a^2+b^2=7\end{cases}}\)
Loai \(a+b+4=0\)
b) \(\sqrt{x^2-10x+25}=7-2x\)
<=> \(\sqrt{\left(x-5\right)^2}=7-2x\)
<=> \(x-5=7-2x\)
<=> 3x = 12 <=> x = 4
hì câu b e bt lm r nhưng up lên trên này 1 câu nên up thêm
dù sao cũng cảm ơn ạ