Tìm x: \(9x^2+2\sqrt{x^2-4}=36\)
Giúp với ạaaaa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x biết: \(\sqrt{4-x^2}=\sqrt{x+2}\)
\(\sqrt{9x^2-4}=2\sqrt{3x-2}\)
Giúp mình với!Mình đang cần gấp
\(\sqrt{4-x^2}=\sqrt{x+2}\) (ĐK: \(-2\le x\le2\))
\(\Leftrightarrow4-x^2=x+2\)
\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow x^2+2x-x-2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-2\left(tm\right)\end{matrix}\right.\)
_______
\(\sqrt{9x^2-4}=2\sqrt{3x-2}\) (ĐK: \(x\ge\dfrac{2}{3}\))
\(\Leftrightarrow9x^2-4=4\left(3x-2\right)\)
\(\Leftrightarrow9x^2-4=12x-8\)
\(\Leftrightarrow9x^2-12x+4=0\)
\(\Leftrightarrow\left(3x-2\right)^2=0\)
\(\Leftrightarrow3x=2\)
\(\Leftrightarrow x=\dfrac{2}{3}\left(tm\right)\)
3: Ta có: \(\sqrt{4x+1}=x+1\)
\(\Leftrightarrow x^2+2x+1=4x+1\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=2\left(nhận\right)\end{matrix}\right.\)
4: Ta có: \(2\sqrt{x-1}+\dfrac{1}{3}\sqrt{9x-9}=15\)
\(\Leftrightarrow3\sqrt{x-1}=15\)
\(\Leftrightarrow x-1=25\)
hay x=26
5: Ta có: \(\sqrt{4x^2-12x+9}=7\)
\(\Leftrightarrow\left|2x-3\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=10\\2x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
a: Ta có: \(\sqrt{x}< 3\)
nên \(0\le x< 9\)
b: Ta có: \(\sqrt{4x+16}+\sqrt{x+4}+2\sqrt{9x+36}=35\)
\(\Leftrightarrow2\sqrt{x+4}+\sqrt{x+4}+6\sqrt{x+4}=35\)
\(\Leftrightarrow\sqrt{x+4}=\dfrac{35}{9}\)
\(\Leftrightarrow x+4=\dfrac{1225}{81}\)
hay \(x=\dfrac{901}{81}\)
a) \(\sqrt{x}< 3\Rightarrow x< 9\)
b) \(\sqrt{4x+16}+\sqrt{x+4}+2\sqrt{9x+36}=35\)
\(\Rightarrow2\sqrt{x+4}+\sqrt{x+4}+6\sqrt{x+4}=35\)
\(\Rightarrow\sqrt{x+4}=\dfrac{35}{9}\)
\(\Rightarrow x+4=\dfrac{1225}{81}\)
\(\Rightarrow x=\dfrac{901}{81}\)
c) \(\sqrt{x+2\sqrt{x-1}}=3\)
\(\Rightarrow\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}=3\)
\(\Rightarrow\sqrt{\left(x-1+1\right)^2}=3\)
\(\Rightarrow\sqrt{x^2}=3\)
\(\Rightarrow\left|x\right|=3\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
\(ĐK:x\ge1\\ PT\Leftrightarrow12\sqrt{x-1}-\sqrt{x-1}-8\sqrt{x-1}+\sqrt{x-1}=16\\ \Leftrightarrow4\sqrt{x-1}=16\\ \Leftrightarrow\sqrt{x-1}=4\\ \Leftrightarrow x-1=16\\ \Leftrightarrow x=17\left(tm\right)\)
`2sqrt{36x-36}-1/3sqrt{9x-9}-4sqrt{4x-4}+sqrt{x-1}=16`
`ĐK:x>=1`
`pt<=>2sqrt{36(x-1)}-1/3sqrt{9(x-1)}-4sqrt{4(x-1)}+sqrt{x-1}=16`
`<=>12sqrt{x-1}-sqrt{x-1}-8sqrt{x-1}+sqrt{x-1}=16`
`<=>4sqrt{x-1}=16`
`<=>sqrt{x-1}=4`
`<=>x-1=16`
`<=>x=17(tmđk)`
Vậy `S={17}`
6) ĐKXĐ: \(x\le-6\)
\(\sqrt{\left(x+6\right)^2}=-x-6\Leftrightarrow\left|x+6\right|=-x-6\)
\(\Leftrightarrow x+6=x+6\left(đúng\forall x\right)\)
Vậy \(x\le-6\)
7) ĐKXĐ: \(x\ge\dfrac{2}{3}\)
\(pt\Leftrightarrow\sqrt{\left(3x-2\right)^2}=3x-2\Leftrightarrow\left|3x-2\right|=3x-2\)
\(\Leftrightarrow3x-2=3x-2\left(đúng\forall x\right)\)
Vậy \(x\ge\dfrac{2}{3}\)
8) ĐKXĐ: \(x\ge5\)
\(pt\Leftrightarrow\sqrt{\left(4-3x\right)^2}=2x-10\)\(\Leftrightarrow\left|4-3x\right|=2x-10\)
\(\Leftrightarrow4-3x=10-2x\Leftrightarrow x=-6\left(ktm\right)\Leftrightarrow S=\varnothing\)
9) ĐKXĐ: \(x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x-3\Leftrightarrow\left|x-3\right|=2x-3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x-3\left(x\ge3\right)\\x-3=3-2x\left(\dfrac{3}{2}\le x< 3\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
a: =>2*căn x+5+căn x+5-1/3*3*căn x+5=4
=>2*căn(x+5)=4
=>căn (x+5)=2
=>x+5=4
=>x=-1
b: =>\(6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)
=>2*căn x-1=16
=>x-1=64
=>x=65
c, \(\sqrt{\left(x-3\right)^2}-2\sqrt{\left(x-1\right)^2}+\sqrt{x^2}=0\\ \Leftrightarrow\left|x-3\right|-2\left|x-1\right|+\left|x\right|=0\left(1\right)\)
TH1: \(x\ge3\)
\(\left(1\right)\Rightarrow x-3-2x+2+x=0\\ \Leftrightarrow-1=0\left(loại\right)\)
TH2: \(2\le x< 3\)
\(\left(1\right)\Rightarrow3-x-2x+2+x=0\\ \Leftrightarrow-2x=-5\\ \Leftrightarrow x=\dfrac{5}{2}\left(tm\right)\)
TH3: \(0\le x< 2\)
\(\left(1\right)\Rightarrow3-x+2x-2+x=0\\ \Leftrightarrow2x=1\\ \Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)
TH4: \(x< 0\)
\(\left(1\right)\Rightarrow3-x+2x-2-x-=0\\ \Leftrightarrow1=0\left(loại\right)\)
Vậy \(x\in\left\{\dfrac{1}{2};\dfrac{5}{2}\right\}\)
a,ĐK: x≥4
Ta có: \(2\sqrt{x-4}-\dfrac{1}{3}\sqrt{9x-36}=4-\sqrt{x-4}\)
\(\Leftrightarrow2\sqrt{x-4}-\sqrt{x-4}=4-\sqrt{x-4}\)
\(\Leftrightarrow2\sqrt{x-4}=4\)
\(\Leftrightarrow\sqrt{x-4}=2\Leftrightarrow x-4=4\Leftrightarrow x=8\left(tm\right)\)
b, ĐK: x≥2
Ta có: \(3\sqrt{x-2}-\sqrt{x^2-4}=0\)
\(\Leftrightarrow3\sqrt{x-2}-\sqrt{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(3-\sqrt{x+2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=0\\3-\sqrt{x+2}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2=0\\\sqrt{x+2}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x+2=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=7\end{matrix}\right.\)
Bài 5:
\(\widehat{B}=60^0\)
\(AB=8\sqrt{3}\left(cm\right)\)
\(BC=16\sqrt{3}\left(cm\right)\)
\(\sqrt{x-2}=3\left(x\ge2\right)\\ \Leftrightarrow x-2=9\Leftrightarrow x=11\left(tm\right)\\ \sqrt{4x^2}+4x+1=3\Leftrightarrow\left|2x\right|=2-4x\\ \Leftrightarrow\left[{}\begin{matrix}2x=2-4x\left(x\ge0\right)\\2x=4x-2\left(x< 0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\left(tm\right)\\x=1\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{1}{3}\)
ĐK \(-2\ge x\le2\)
Ta có \(9x^2+2\sqrt{x^2-4}=36\)
\(\Leftrightarrow9\left(x^2-4\right)+2\sqrt{x^2-4}=0\)
Đặt \(\sqrt{x^2-4}=t\left(t\ge0\right)\Rightarrow x^2-4=t^2\)ta có
\(9t^2+2t=0\Leftrightarrow t\left(9t+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=0\\9t+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}t=0\left(TM\text{Đ}K\right)\\t=-\frac{2}{9}\left(lo\text{ại}\right)\end{cases}}}\)
\(\Leftrightarrow\sqrt{x^2-4}=0\Leftrightarrow x^2-4=0\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\left(TM\text{Đ}K\right)\)