Cho M = \(\left\{0;7;14;21;28;35;42\right\}\)
Tìm a; b \(\in\) M sao cho:
a) \(\dfrac{a}{b}\) có giá trị lớn nhất
b) \(\dfrac{a-b}{a+b}\) là phân số dương nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ôi mình nhầm để giải lại:
a)đkxđ: x\(\ne\left\{-1;1;2\right\}\)
M=\(\dfrac{\left(x^2-3x+2\right)\left(x^2-4\right)}{\left(x^2-1\right)\left(x^2-4x+4\right)}=\dfrac{\left(x-1\right)\left(x-2\right)\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x-2\right)^2}=\dfrac{x+2}{x+1}\)
b)Với x\(\ne\left\{-1;1;2\right\}\) thì M=\(\dfrac{x+2}{x+1}\)
Để M>0 thì \(\dfrac{x+2}{x+1}\)>0
<=> \(\left\{{}\begin{matrix}x+1>0\\x+2>0\end{matrix}\right.\)hoặc\(\left\{{}\begin{matrix}x+1< 0\\x+2< 0\end{matrix}\right.\)
<=>x>-1 hoặc x<-2
Vậy x>-1 hoặc x<-2 và x khác {1;2} thì M>0
M<0 <=>\(\dfrac{x+2}{x+1}\)<0
<=>\(\left\{{}\begin{matrix}x+1< 0\\x+2>0\end{matrix}\right.hoặc}\left\{{}\begin{matrix}x+1>0\\x+2< 0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x< -1\\x>-2\end{matrix}\right.hoặc}\left\{{}\begin{matrix}x>-1\\x< -2\end{matrix}\right.\)
Vậy -2<x<-1 thì M<0
M=0<=> \(\dfrac{x+2}{x+1}\)=0
=>x+2=0
<=>x=-2(TMĐKXĐ)
Vậy x=-2 thì M=0
M vô nghĩa khi M không xác định <=> x={-1;1;2}
\(\dfrac{\left(x^2-3x+2\right)\left(x^2-4\right)}{\left(x^2-1\right)\left(x^2-4x+4\right)}\)
\(\dfrac{\left(x^2-x-2x+2\right)\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x^2-2x-2x+4\right)}\)
\(\dfrac{\left[x\left(x-1\right)-2\left(x-1\right)\right]\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left[x\left(x-2\right)-2\left(x-2\right)\right]}\)
\(\dfrac{\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x-2\right)}=\dfrac{x+2}{x-1}\)
b: Để phương trình có hai nghiệm trái dấu thì (m+2)(m-4)<0
=>-2<m<4
Để B>0 thì -x>0
hay x<0
Để B<0 thì -x<0
hay x>0
Để B=0 thì \(\left(1-x\right)^4=0\)
=>x=1
\(\Leftrightarrow\left|x^2-4\left|x\right|+2\right|=m\) (1) có 8 nghiệm phân biệt
Đặt \(x^2-4\left|x\right|+2=t\) (2)
Từ đồ thị của hàm \(y=x^2-4\left|x\right|+2\) ta thấy:
- Với \(t< -2\Rightarrow\) (2) vô nghiệm
- Với \(\left[{}\begin{matrix}t=-2\\t>2\end{matrix}\right.\Rightarrow\) (2) có 2 nghiệm
- Với \(-2< t< 2\Rightarrow\) (2) có 4 nghiệm
- Với \(t=2\Rightarrow\) (2) có 3 nghiệm
Khi đó (1) trở thành: \(\left|t\right|=m\) (3) có tối đa 2 nghiệm
\(\Rightarrow\)Phương trình đã cho có 8 nghiệm pb khi và chỉ khi (3) có 2 nghiệm t phân biệt thỏa mãn \(-2< t< 2\)
\(\Rightarrow0< m< 2\)
Không có phương án nào đúng
1.
Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}\Delta=25-12m>0\\x_1^2+x_2^2< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(x_1+x_2\right)^2-2x_1x_2< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(2m-3\right)^2-2\left(m^2-4\right)< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\2m^2-12m< 0\end{matrix}\right.\)
\(\Leftrightarrow0< m< \dfrac{25}{12}\)
\(a=1>0\) ; \(\Delta'=\left(m-2\right)^2-\left(m-2\right)=\left(m-2\right)\left(m-3\right)\)
a/ Để \(f\left(x\right)\le0\) \(\forall x\in\left(0;1\right)\)
\(\Leftrightarrow x_1\le0< 1\le x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m-2\le0\\1-\left(m-2\right)\le0\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn
Do đó các câu c, f cũng không tồn tại m thỏa mãn
b/ TH1: \(\Delta< 0\Rightarrow2< m< 3\)
TH2: \(\left\{{}\begin{matrix}\Delta=0\\-\frac{b}{2a}\notin\left(0;1\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=2\\m=3\end{matrix}\right.\)
TH3: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0\le x_1< x_2\\x_1< x_2\le1\end{matrix}\right.\end{matrix}\right.\)
\(\Delta>0\Rightarrow\left[{}\begin{matrix}m>3\\m< 2\end{matrix}\right.\)
\(0\le x_1< x_2\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\ge0\\\frac{x_1+x_2}{2}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m-2\ge0\\m-2>0\end{matrix}\right.\) \(\Rightarrow m>2\) \(\Rightarrow m>3\)
\(x_1< x_2\le1\Leftrightarrow\left\{{}\begin{matrix}f\left(1\right)\ge0\\\frac{x_1+x_2}{2}< 1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3-m\ge0\\m-2< 1\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m
Kết hợp 3 TH \(\Rightarrow m\ge2\)
d/ Tương tự như câu b, nhưng
TH2: \(\left\{{}\begin{matrix}\Delta=0\\-\frac{b}{2a}\in\left[0;1\right]\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn
TH3: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0< x_1< x_2\\x_1< x_2< 1\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow m>3\)
Kết hợp 3 TH \(\Rightarrow\left[{}\begin{matrix}2< m< 3\\m>3\end{matrix}\right.\)
e/
TH1: \(\Delta\le0\Rightarrow2\le m\le3\)
TH2: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0\le x_1< x_2\\x_1< x_2\le1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>3\)
\(\Rightarrow m\ge2\)
M = {0;7;14;21;28;35;42}
a.Ta có : a/b đạt giá trị lớn nhất khi a đạt giá trị lớn nhất và b đạt giá trị bé nhất (a,b E N*)=> a = 42;b=7