2a3-12a2+17a-a-2/a-2 biết a là nghiệm của pt |a2-3a+1|=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay \(a=0\) vào phương trình, ta được:
\(x^2-2x-3=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy ...
b) Ta có: \(\Delta'=4-3a\)
Để phương trình có 2 nghiệm x1 và x2 \(\Leftrightarrow\Delta'\ge0\) \(\Leftrightarrow a\le\dfrac{4}{3}\)
Vậy ...
c) Phương trình có nghiệm bằng -1
\(\Rightarrow1+2\left(1-a\right)+a^2+a-3=0\)
\(\Leftrightarrow a^2-a=0\) \(\Rightarrow\left[{}\begin{matrix}a=1\\a=0\end{matrix}\right.\)
Vậy ...
pt: \(x^2+2\left(a-1\right)x+a^2+a-3=0\) (1)
a) khi a=0 pt(1) \(\Leftrightarrow x^2-2x-3=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
b) \(\Delta'=b'^2-ac=\left(a-1\right)^2-\left(a^2+a-3\right)=-3a+4\)
phương trình có 2 nghiệm phân biệt khi \(\Delta'>0\Leftrightarrow-3a+4>0\Leftrightarrow a< \dfrac{4}{3}\)
c) pt(1) có nghiệm x=-1 \(\Leftrightarrow\left(-1\right)^2+2\left(a-1\right).\left(-1\right)+a^2+a-3=0\)
\(\Leftrightarrow a^2-a=0\Leftrightarrow\left[{}\begin{matrix}a=0\\a=1\end{matrix}\right.\)
Đễ x=2 là nghiệm của pt thì ( a2 - a - 3 ).4 + ( a + 2 ).2 - 3a2 = 0
<=> 4a2 - 4a - 12 + 2a + 4 - 3a2 = 0
<=> a2 - 2a - 8 = 0(*)
Δ = b2 - 4ac = 4 + 32 = 36
Δ > 0, áp dụng công thức nghiệm thu được a1 = 4 ; a2 = -2
Vậy với a = 4 hoặc a = -2 thì phương trình nhận x = 2 làm nghiệm
+) Với a = 4
pt đã cho trở thành 9x2 + 6x - 48 = 0
<=> 3x2 + 2x - 16 = 0
Theo hệ thức Viète ta có : x1 + x2 = -b/a = -2/3
<=> 2 + x2 = -2/3 <=> x2 = -8/3
+) Với a = -2
pt đã cho trở thành 3x2 - 12 = 0
<=> x2 - 4 = 0 <=> ( x - 2 )( x + 2 ) = 0
<=> x = 2 hoặc x = -2
Vậy nghiệm còn lại của pt là x = -8/3 với a = 4 ; x = -2 với a = -2
a) Khi $a=3$, ta có phương trình:
$$x-3x+3-x+3x-3+3^2+3^3-3^2=0$$
$$\Leftrightarrow 6x=51 \Leftrightarrow x=\frac{17}{2}$$
Vậy nghiệm của phương trình là $x=\frac{17}{2}$.
b) Khi $a=1$, ta có phương trình:
$$x-x+1-x+1x-1+3+1-1=0$$
$$\Leftrightarrow x=0$$
Vậy nghiệm của phương trình là $x=0$.
c) Để phương trình có nghiệm $x=0,5$, ta cần giải phương trình:
$$0,5-a(0,5)+a-0,5+a(0,5)-a+3a^2+a^3-a^2=0$$
$$\Leftrightarrow a^3+3a^2-2a=0$$
$$\Leftrightarrow a(a-1)(a+2)=0$$
Vậy các giá trị của $a$ để phương trình có nghiệm $x=0,5$ là $a=0,1$ hoặc $a=-2$.
\(\left|a^2-3a+1\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}a^2-3a+1=1\\a^2-3a+1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a\left(a-3\right)=0\\\left(a-2\right)\left(a-1\right)=0\end{matrix}\right.\Leftrightarrow a\in\left\{0;3;2;1\right\}\)
\(\dfrac{2a^3-12a^2+17a-a-2}{a-2}=\dfrac{2a^3-12a^2+16a-2}{a-2}\)
\(=\dfrac{2a^3-4a^2-8a^2+16a-2}{a-2}\)
\(=2a^2-8a-\dfrac{2}{a-2}\)
Khi a=2 thì A không có giá trị
Khi a=1 thì \(A=2-8-\dfrac{2}{1-2}=-6+2=-4\)
Khi a=0 thì \(A=0-0-\dfrac{2}{0-2}=-\dfrac{2}{-2}=1\)
Khi a=3 thì \(A=2\cdot9-8\cdot3-\dfrac{2}{3-2}=18-24-2=-8\)