Tìm x biết:
a) x2 = 4
b) x2 = 2
c) x2 = 0
d) x2 = -25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x = -1. b) x = 4 hoặc x = 5.
c) x = ± 2 . d) x = 1 hoặc x = 2.
a) x = 1; x = - 1 3 b) x = 2.
c) x = 3; x = -2. d) x = -3; x = 0; x = 2.
Bài 3
a) x² + 10x + 25
= x² + 2.x.5 + 5²
= (x + 5)²
b) 8x - 16 - x²
= -(x² - 8x + 16)
= -(x² - 2.x.4 + 4²)
= -(x - 4)²
c) x³ + 3x² + 3x + 1
= x³ + 3.x².1 + 3.x.1² + 1³
= (x + 1)³
d) (x + y)² - 9x²
= (x + y)² - (3x)²
= (x + y - 3x)(x + y + 3x)
= (y - 2x)(4x + y)
e) (x + 5)² - (2x - 1)²
= (x + 5 - 2x + 1)(x + 5 + 2x - 1)
= (6 - x)(3x + 4)
Bài 4
a) x² - 9 = 0
x² = 9
x = 3 hoặc x = -3
b) (x - 4)² - 36 = 0
(x - 4 - 6)(x - 4 + 6) = 0
(x - 10)(x + 2) = 0
x - 10 = 0 hoặc x + 2 = 0
*) x - 10 = 0
x = 10
*) x + 2 = 0
x = -2
Vậy x = -2; x = 10
c) x² - 10x = -25
x² - 10x + 25 = 0
(x - 5)² = 0
x - 5 = 0
x = 5
d) x² + 5x + 6 = 0
x² + 2x + 3x + 6 = 0
(x² + 2x) + (3x + 6) = 0
x(x + 2) + 3(x + 2) = 0
(x + 2)(x + 3) = 0
x + 2 = 0 hoặc x + 3 = 0
*) x + 2 = 0
x = -2
*) x + 3 = 0
x = -3
Vậy x = -3; x = -2
a: \(\Leftrightarrow\left(x-5\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\\x=1\end{matrix}\right.\)
d: \(\Leftrightarrow\left(x+3\right)\left(x^2-4x+5\right)=0\)
\(\Leftrightarrow x+3=0\)
hay x=-3
a) Ta có: x 2 = 2 2 nên x = 2.
b) Ta có: x 2 = 5 2 nên x = 5.
c) Ta có: 3 x 5 = 3 nên x 5 = 1 . Do đó x = 1.
d) Ta có: 6 x 3 = 48 nên x 3 = 8 . Do đó x = 2.
e) Ta có: x - 1 2 = 2 2 nên x - 1 = 2 . Do đó x = 3.
f) Ta có: x + 1 2 = 5 2 nên x +1 = 5. Do đó x = 4.
g) Ta có: x - 1 3 = 3 3 nên x - 1 = 3 . Do đó x = 4.
h) Ta có: x + 1 3 = 4 3 nên x +1 = 4. Do đó x = 3
a) Ta có: x 2 = 2 2 nên x = 2.
b) Ta có: x 2 = 5 2 nên x = 5.
c) Ta có: 3 . x 5 = 3 nên x 5 = 1 . Do đó x = 1.
a) \(x^2=4\)
\(\Leftrightarrow x=\pm2\)
Vậy \(x=\pm2.\)
b) \(x^2=2\)
\(\Leftrightarrow x=\pm\sqrt{2}\)
Vậy \(x=\pm\sqrt{2}.\)
c) \(x^2=0\)
\(\Leftrightarrow x=0\)
Vậy \(x=0.\)
d) có \(x^2\ge0\forall x\) mà \(-25< 0\)
\(\Rightarrow\) Phương trình vô nghiệm.
* Tổng quát: Với phương trình \(x^2=a\) \(\left(a\ge0\right)\)
Thì phương trình có nghiệm là \(x=\pm\sqrt{a}.\)
Chúc bạn học tốt!