CMR : a4 + b4 + 2 ≥ 4ab ( a,b>0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo bài ta có:
a + b + c = 0
=> a = -(b + c)
=> a2 = [-(b + c)]2
=> a2 = b2 + 2bc + c2
=> a2 - b2 - c2 = 2bc
=> ( a2 - b2 - c2)2 = (2bc)2
=> a4 + b4 + c4 - 2a2c2 + 2b2c2 - 2a2c2 = 4b2c2
=> a4 + b4 + c4 = 2a2c2 + 2b2c2 + 2a2c2
=> 2(a4 + b4 + c4) = a4 + b4 + c4 + 2a2c2 + 2b2c2 + 2a2c2
=> 2(a4 + b4 + c4) = (a2 + b2 + c2)2
=> 2(a4 + b4 + c4) = 1
=> a4 + b4 + c4 = \(\dfrac{1}{2}\)
Áp dụng bất đẳng thức Cô-si với hai số \(a,b\) không âm, ta có:
\(a+b\ge2\sqrt{ab}\) \(\left(1\right)\)
\(ab+1\ge2\sqrt{ab}\) \(\left(2\right)\)
Nhân \(\left(1\right)\) với \(\left(2\right)\) vế theo vế, ta được:
\(\left(a+b\right)\left(ab+1\right)\ge4ab\) \(\left(đpcm\right)\)
Dấu \(''=''\) xảy ra \(\Leftrightarrow\) \(a=b\) và \(ab=1\) \(\Leftrightarrow\) \(a=b=1\) (do \(a>0\) và \(b>0\), tức \(a,b\) dương)
Chú ý (không ghi): bài này có nhiều cách, bạn có thể tìm cách mới!
Ta có \(a^4+b^4\ge2a^2.b^2\) (Bất đẳng thức Cô si với \(a^2;b^2\ge0\) )
Tương tự \(b^4+c^4\ge2b^2.c^2;a^4+c^4\ge2a^2.c^2\)
Do đó: \(a^4+b^4+c^4\ge\dfrac{2a^2b^2+2b^2c^2+2a^2c^2}{2}=a^2b^2+b^2c^2+a^2c^2\)(1)
Ta lại có:\(a^2b^2+b^2c^2\ge2ab^2c;b^2c^2+a^2c^2\ge2abc^2;a^2c^2+a^2b^2\ge2a^2bc\)
Nên\(a^2b^2+b^2c^2+a^2c^2\ge a^2bc+ab^2c+abc^2=abc\left(a+b+c\right)=3abc\left(a+b+c=3,gt\right)\)
(1);(2) => \(a^4+b^4+c^4\ge3abc\) ;đẳng thức xảy ra khi a = b = c = 1 (*)
Giả sử: \(a^3+b^3+c^3\ge3abc\\ \Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\ge0\\ \Leftrightarrow\left(a+b+c\right)^3-3ab\left(a+b+c\right)-3c\left(a+b\right)\left(a+b+c\right)\ge0\\ \Leftrightarrow\left(a+b+c\right)\left[\left(a+b+c\right)^2-ab-bc-ac\right]\ge0\\2.3\left(a^2+b^2+c^2-ab-bc-ac\right)\ge0\\
\Leftrightarrow3\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)\ge0\\\Leftrightarrow3\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\ge0\)
Đúng mới mọi a,b,c ϵR
Vậy \(a^3+b^3+c^3\ge3abc\) và đẳng thức xảy ra khi a=b=c=(a+b+c)/3 =1(**)
Ta lại có \(a^4\ge a^3;b^4\ge b^3;c^4\ge c^3\) mà a+b+c = 3
Nên \(a^4+b^4+c^4>a^3+b^3+c^3\) (***)
Từ (*);(**);(***) ta có điều phải chứng minh và đẳng thức xảy ra khi a= b=c=1
Tôi có cách chứng minh bằng đồng bậc hóa bất đẳng thức như sau:
ta sẽ chứng minh:
\(3\left(a^4+b^4+c^4\right)>=\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
<=> \(2\left(a^4+b^4+c^4\right)>=ab\left(a^2+b^2\right)+bc\left(b^2+c^2\right)+ca\left(c^2+a^2\right)\)
mà ta có theo bất đẳng thức AMGM \(a^4+b^4>=\dfrac{\left(a^2+b^2\right)^2}{2}>=\dfrac{2ab\left(a^2+b^2\right)}{2}=ab\left(a^2+b^2\right)\)
làm tương tự rồi cộng lại, ta có đpcm.
a:Sửa đề: \(a^2-4ab+4b^2\)
\(=a^2-2\cdot a\cdot2b+4b^2\)
\(=\left(a-2b\right)^2\ge0\)(luôn đúng)
b: \(-2a^2+a-1\)
\(=-2\left(a^2-\dfrac{1}{2}a+\dfrac{1}{2}\right)\)
\(=-2\left(a^2-2\cdot a\cdot\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{7}{16}\right)\)
\(=-2\left(a-\dfrac{1}{2}\right)^2-\dfrac{7}{8}\le-\dfrac{7}{8}< 0\forall x\)
\(a^2+5b^2-4ab+2a-6b+3\)
\(=\left(a^2-4ab+4b^2\right)+\left(2a-4b\right)+1+\left(b^2-2b+1\right)+1\)
\(=\left(a-2b\right)^2+2\left(a-2b\right)+1+\left(b^2-2b+1\right)+1\)
\(=\left(a-2b+1\right)^2+\left(b-1\right)^2+1\ge1\forall a;b\)
Mà \(1>0\) nên \(a^2+5b^2-4ab+2a-6b+3>0\forall a;b\)(đpcm)
\(a^4+b^4+2=a^4+b^4+1+1\ge4\sqrt[4]{a^{4\cdot}\cdot b^4\cdot1\cdot1}=4ab\left(đpcm\right)\)
Dấu ''='' xảy ra khi a = b
Áp dụng BĐT Cauchy cho 4 số không âm , ta có :
a4 + b4 + 1 + 1 ≥ \(4\sqrt[4]{a^4.b^4.1.1}=4ab\)
Đẳng thức xảy ra khi và chỉ khi : a = b = 1