CMR: Nếu x, y là 2 số nguyên tố (x, y>3) thì x2 - y2 chia hết cho 24.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chị sợ e kh hỉu nên chỵ làm dài dòng xíu nha. em hỉu r thi thu gọn lại bỏ bớt mấy chỗ k cần thiết
1. Vì p nguyên tố và p>3 => p không chia hết cho 3 => p=3k+1 hoặc p=3k+2
Nếu p = 3k+1 =>(p-1).(p+1) =(3k+1-1).(3k+1+1)= 3k(3k+2)
Vì 3k chia hết 3 => 3k(3k+2) chia hết cko 3. Hay(p-1).(p+1) ckia hết cho 3 (1)
Tương tự p=3k+2 =>p+1 = 3k+3 chia hết cho 3 =)( p-1)(p+1) chia hết cho 3 (2)
từ (1),(2) => (p-1)(p+1) chia het cho 3
Vì p nto và p >3 => p lẻ => p = 2h+1
Ta có (p-1).(p+1)= (2h+1-1)(2h+1+1)= 2h(2h+2)
Mà 2h và 2h+1 là tích 2 số chẵn liên tiếp => 2h(2h+2) chia hết cho 8
Mà (3,8)=1 => (p-1)(p+1) chia hết cho 24
2.
Nếu 3 số x,y,z chia 3 khác số dư thì x+y+z chia hết cho 3
và (x-y),(y-z),(z-x) không chia hết cho 3
hay (x-y)(y-z)(z-x) không chia hết cho 3
=> (1) vô lí
+,Nếu trog 3 số 2 số có cùng số dư thì giả sử y,z cùng dư; x khác dư
khi đó x+y+z không c/h cho 3 ;
x-y và z-x không chia hết cho 3; y-z chia hết cho 3
=>(x-y).(y-z).(z-x) chia hết cho 3
=> (1) vô lí
Tóm lại 3 số x,y,z chia 3 cùng dư
khi đó (x-y),(y-z),(z-x) cùng chia hết cho 3
=> đpcm
p2 − 1 = (p + 1) (p − 1)
trước hết p là số lẻ nêm p‐1 và p+1 là 2 số chẵn liên tiếp nên chia hết cho 2*4=8
mặt khác p>3 nên p‐1 hoặc p+1 chia hết cho 3
﴾3;8﴿=1 nên suy ra đpcm
a) Giả sử \(x+y\) là số nguyên tố
Ta có : \(x^3-y^3⋮x+y\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)⋮x+y\)
\(\Rightarrow x^2+xy+y^2⋮x+y\) ( Do \(x-y< x+y,\left(x-y,x+y\right)=1\) vì \(x+y\) là số nguyên tố )
\(\Rightarrow x^2⋮x+y\) ( Do \(xy+y^2=y\left(x+y\right)⋮x+y\) )
\(\Rightarrow x⋮x+y\) (1)
Mặt khác \(x< x+y,x+y\) là số nguyên tố
\(\Rightarrow x⋮̸x+y\) mâu thuẫn với (1)
Do đó, điều giả sử sai.
Vậy ta có điều phải chứng minh.
vì p>3 nên p có dạng p=3k+1 hoặc p=3k+2
với p=3k+1 thì p^2-1=(p+1)(p-1)=(3k+2)3k chia hết cho 3
với p=3k+2 thì p^2-1=(p+1)(p-1)=(3k+3)(3k+1) chia hết cho 3
vậy với mọi số nguyên tố p>3 thì p^2-1 chia hết cho 3 (1)
mặt khác cũng vì p>3 nên p là số lẻ =>p+1,p-1 là 2 số chẵn liên tiếp
=>trong hai sô p+1,p-1 tồn tại một số là bội của 4
=>p^2-1 chia hết cho 8 (2)
từ (1) và (2) => p^2-1 chia hết cho 24 với mọi số nguyên tố p>3
Ta có x là một số nguyên tố lớn hơn 3 ( gt )
Nên x không thể chia hết cho 3 và x^2 chia 3 dư 1
\(\Rightarrow x^2-1⋮3\)
x là nguyên tố lớn hơn 3 nên x là số lẻ suy ra x^2 chia 8 dư 1
\(\Rightarrow x^2-1⋮8\)
\(\Rightarrow x^2-1⋮24\left(đpcm\right)\)