Cho pt x2 + 2( m +1 )x + m2 + 2m -8=0 . Xác định m để -5 < x1 < x2< 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì 1 < x1 < x2 < 6 nên pt đã cho có 2 nghiệm dương phân biệt
Tức là \(\hept{\begin{cases}\Delta>0\\S>0\\P>0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(2m-3\right)^2-4m^2+12m>0\\2m-3>0\\m^2-3m>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4m^2-12m+9-4m^2+12m>0\\m>\frac{3}{2}\\m< 0\left(h\right)m>3\end{cases}}\)
\(\Leftrightarrow m>3\)
Có \(\Delta=9>0\)
Nên pt có 2 nghiệm phân biệt \(x_1=\frac{2m-3-3}{2}=m-3\)
\(x_2=\frac{2m-3+3}{2}=m\) (Do m - 3 < m nên x1 < x2 thỏa mãn đề bài)
Vì \(1< x_1< x_2< 6\)
\(\Rightarrow\hept{\begin{cases}m-3>1\\m< 6\end{cases}}\)
\(\Leftrightarrow4< m< 6\)(Thỏa mãn)
c, C1_) Có \(x_1^2+x_2^2=\left(m-3\right)^2+m^2\)
\(=m^2-6m+9+m^2\)
\(=2m^2-6m+9\)
\(=2\left(m^2-3m+\frac{9}{4}\right)+\frac{9}{2}\)
\(=2\left(m-\frac{3}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow m=\frac{3}{2}\)
C2_) Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=2m-3\\x_1x_2=m^2-3m\end{cases}}\)
Có : \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\left(2m-3\right)^2-2m^2+6m\)
\(=4m^2-12m+9-2m^2+6m\)
\(=2m^2-6m+9\)
\(=2\left(m-\frac{3}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)
Dấu "=" khi \(m=\frac{3}{2}\)
\(\Delta=\left(2m-3\right)^2-4\left(m^2-3m\right)=9>0;\forall m\)
\(\Rightarrow\) Pt đã cho luôn có 2 nghiệm pb
Do \(x_1< x_2\Rightarrow\left\{{}\begin{matrix}x_1=\frac{2m-3-\sqrt{9}}{2}=m-3\\x_2=\frac{2m-3+\sqrt{9}}{2}=m\end{matrix}\right.\)
\(\Rightarrow0< m-3< m< 5\)
\(\Rightarrow3< m< 5\)
PT : \(x^2-\left(2m-3\right)x+m^2-3m=0\)
a ) Làm tổng luôn ta chỉ cần thay m = 1 là xong
b ) \(\Delta_{\left(x\right)}=\left(2m-3\right)^2-4\left(m^2-3m\right)=4m^2-12m+9-4m^2+12m=9\)\(>0\forall m\in R\Rightarrowđpcm\)
c ) \(\hept{\begin{cases}x_1=m-3;x_2=m\\m>m-3\forall m\in R\\1< x_1< x_2< 6\end{cases}}\) quay lại a ) m=1 \(\Rightarrow\hept{\begin{cases}x_1=-2\\x_2=1\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=1\\x_2=-2\end{cases}}\)
\(4< m< 6\)
a: \(\text{ }\text{Δ}=\left(2m-3\right)^2-4\left(m^2-3m\right)\)
\(=4m^2-12m+9-4m^2+12m=9>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
Theo đề, ta có: \(\left\{{}\begin{matrix}x_1+x_2>2\\x_1+x_2< 12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2m-3>2\\2m-3< 12\end{matrix}\right.\Leftrightarrow\dfrac{5}{2}< m< \dfrac{15}{2}\)
a) D=(2m-1)^2+4m=4m^2+1>0
=>pt luôn có nghiệm với mọi m
b) theo hệ thức vi-et: x1 + x2 = 2m-1 (1)
và x1.x2=-m thay vào (1) ta được x1 + x2 = -2.x1.x2 - 1
c) A = x1^2 + x2^2 - 6x1.x2 = (x1+x2)^2 - 8.x1.x2 = (2m-1)^2 + 8m =(2m+1)^2 >=0
đẳng thức xảy ra khi: 2m+1 =0 <=> m= -1/2
vậy min A = 0 khi m= - 1/2
d) giả sử x1<x2<1 thì x2 = (2m-1+ căn hai D)/2 < 1
<=> căn hai D < 3 - 2m
<=> 4m^2 + 1 < 9 -12m +4m^2 (đk: 3-2m>0 hay m<3/2)
<=> m < 2/3
123 + 345 = 468
468 + 567 = 1035
1035 - 236 = 799
799 - 189 = 610
610 + 853 = 1463
pt có 2 nghiệm phân biệt (x1 < x2)
=> Δ' > 0
Δ' = (m+1)2 - (m^2+2m - 8) = 9 > 0
\(x1=\dfrac{-2m-2-3}{2}=\dfrac{-2m-5}{2}\)
\(x2=\dfrac{-2m-2+3}{2}=\dfrac{-2m+1}{2}\)
=> x2- x1 = 3
-5 < x1 < x2 < 7
<=> \(-5< \dfrac{-2m-5}{2}< \dfrac{-2m+1}{2}< 7\)
<=> \(-10< -2m-5< -2m+1< 14\)
<=> -6,5 < m < 2,5 ?