Tìm x để B=\(\dfrac{3\sqrt{x}}{\sqrt{x}+1}\) có giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)(2sqrtx-9)/(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)-(2sqrtx+1)/(3-sqrtx)(x>=0,x ne 4,x ne 9)`
`=(2sqrtx-9)/(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)+(2sqrtx+1)/(sqrtx-3)`
`=(2sqrtx-9+(sqrtx-3)(sqrtx+3)+(2sqrtx+1)(sqrtx-2))/(x-5sqrtx+6)`
`=(2sqrtx-9+x-9+2x-3sqrtx-2)/(x-5sqrtx+6)`
`=(3x-sqrtx-20)/
ĐK:\(\sqrt{x+2\sqrt{x-1}}=\sqrt{x-1+2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}+1\right)^2}=\left|\sqrt{x-1}+1\right|\)
Suy ra : ĐK là x -1>0 suy ra x>1
Trường hợp mẫu số của phân thức 2 cũng tương tự tìm được ĐK x>1
Ta có \(M=\frac{1}{\sqrt{x-1}+1}-\frac{1}{\sqrt{x-1}-1}\)
\(M=\frac{\sqrt{x-1}-1-\sqrt{x-1}-1}{\left(\sqrt{x-1}+1\right)\left(\sqrt{x-1}-1\right)}\)
\(M=\frac{-2}{x-1-1}=\frac{-2}{x-2}\)
Tới đây rồi thì tìm giá trị nguyên thì giống với lớp 6,7 đó tự tìm thì chắc ai cũng tìm được
1,
\(A=\frac{\sqrt{x-3}}{2}\) có giá trị nguyên nên \(\left(\sqrt{x}-3\right)⋮2\)
Suy ra x là số chính phương lẻ.
Vì x < 30 nên\(x\in\left\{1^2;3^2;5^2\right\}\) hay \(x\in\left\{1;9;25\right\}\)
2,
Khi x là số nguyên thì \(\sqrt{x}\) hoặc là số nguyên (nếu x là số chính phương) hoặc là số vô tỉ (nếu x không phải số chính phương). Để \(B=\frac{5}{\sqrt{x-1}}\) là số nguyên thì \(\sqrt{x}\) không thể là số vô tỉ, do đó \(\sqrt{x}\) là số nguyên và \(\sqrt{x-1}\) phải là ước của 5 tức là √xx - 1 ∈ Ư(5). Để B có nghĩa ta phải có x \(\ge\)0 và x\(\ne\) 1. Ta có bảng sau:
\(\sqrt{x-1}\) | 1 | -1 | 5 | -5 |
\(\sqrt{x}\) | 2 | 0 | 6 | -4(loại) |
\(x\) | 4 | 0 | 36 |
Vậy x\(\in\){4;0;36} (các giá trị này đều thoả mãn điều kiện x \(\ge\) 0 và x\(\ne\) 1).
Để \(\frac{7}{\sqrt{x-1}}\in Z\)thì \(\sqrt{x-1}\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x-1}=1\\\sqrt{x-1}=7\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=50\end{cases}}}\)
Vậy........
\(B=\dfrac{3\left(\sqrt{x}+1\right)-3}{\sqrt{x}+1}=3-\dfrac{3}{\sqrt{x}+1}\)
Để B nguyên => \(\sqrt{x}+1\inƯ\left(3\right)\)
Giải ra ta tìm đc : \(x=\left\{0;4\right\}\)