A=\(\dfrac{2x}{x-1}-\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\) (với x\(\ge\)0; x\(\ne\)1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(A=\left(\sqrt{x}+\sqrt{y}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(=\dfrac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(=\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}\)
b: \(\sqrt{xy}>=0;x-\sqrt{xy}+y>0\)
Do đó: A>=0
\(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}}{x-1}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-2\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)
\(A< \dfrac{3}{5}\Rightarrow\dfrac{3}{5}-A>0\Rightarrow\dfrac{3}{5}-\dfrac{\sqrt{x}-3}{\sqrt{x}-1}>0\)
\(\Rightarrow\dfrac{3\left(\sqrt{x}-1\right)-5\left(\sqrt{x}-3\right)}{5\left(\sqrt{x}-1\right)}>0\Rightarrow\dfrac{12-2\sqrt{x}}{5\left(\sqrt{x}-1\right)}>0\)
\(\Rightarrow\dfrac{2}{5}.\dfrac{6-\sqrt{x}}{\sqrt{x}-1}>0\Rightarrow\dfrac{6-\sqrt{x}}{\sqrt{x}-1}>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}6-\sqrt{x}>0\\\sqrt{x}-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}6-\sqrt{x}< 0\\\sqrt{x}-1< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}1< x< 36\\\left\{{}\begin{matrix}x>36\\x< 1\end{matrix}\right.\left(l\right)\end{matrix}\right.\)
\(\Rightarrow1< x< 36\)
\(=>A=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\dfrac{x-2\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)
để \(A< \dfrac{3}{5}< =>\dfrac{\sqrt{x}-3}{\sqrt{x}-1}< \dfrac{3}{5}\)
\(< =>\dfrac{5\left(\sqrt{x}-3\right)-3\left(\sqrt{x}-1\right)}{5\left(\sqrt{x}-1\right)}< 0\)
\(< =>\dfrac{2\sqrt{x}-12}{5\left(\sqrt{x}-1\right)}< 0\)
\(=>\left\{{}\begin{matrix}\left[{}\begin{matrix}2\sqrt{x}-12>0\\5\left(\sqrt{x}-1\right)< 0\end{matrix}\right.\\\left[{}\begin{matrix}2\sqrt{x}-12< 0\\5\left(\sqrt{x}-1\right)>0\end{matrix}\right.\end{matrix}\right.\)\(=>\left\{{}\begin{matrix}\left[{}\begin{matrix}x>36\\x< 1\end{matrix}\right.\\\left[{}\begin{matrix}x< 36\\x>1\end{matrix}\right.\end{matrix}\right.=>1< x< 36\left(tm\right)\)
a) Ta có: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(=\dfrac{x-1}{\sqrt{x}}\)
b) Ta có: \(x=4+2\sqrt{3}\)
\(\Leftrightarrow x=3+2\cdot\sqrt{3}\cdot1+1\)
hay \(x=\left(\sqrt{3}+1\right)^2\)
Thay \(x=\left(\sqrt{3}+1\right)^2\) vào biểu thức \(A=\dfrac{x-1}{\sqrt{x}}\), ta được:
\(A=\dfrac{\left(\sqrt{3}+1\right)^2-1}{\sqrt{\left(\sqrt{3}+1\right)^2}}=\dfrac{4+2\sqrt{3}-1}{\sqrt{3}+1}\)
\(\Leftrightarrow A=\dfrac{\left(3+2\sqrt{3}\right)\left(\sqrt{3}-1\right)}{2}=\dfrac{3\sqrt{3}-3+6-2\sqrt{3}}{2}\)
\(\Leftrightarrow A=\dfrac{\sqrt{3}+3}{2}\)
Vậy: Khi \(x=4+2\sqrt{3}\) thì \(A=\dfrac{\sqrt{3}+3}{2}\)
Lời giải:
$A=\frac{10\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+4)}-\frac{(2\sqrt{x}-3)(\sqrt{x}-1)}{(\sqrt{x}+4)(\sqrt{x}-1)}-\frac{(\sqrt{x}+1)(\sqrt{x}+4)}{(\sqrt{x}-1)(\sqrt{x}+4)}$
$=\frac{10\sqrt{x}-(2\sqrt{x}-3)(\sqrt{x}-1)-(\sqrt{x}+1)(\sqrt{x}+4)}{(\sqrt{x}+4)(\sqrt{x}-1)}$
$=\frac{-3x+10\sqrt{x}-7}{(\sqrt{x}+4)(\sqrt{x}-1)}$
$=\frac{-(\sqrt{x}-1)(3\sqrt{x}-7)}{(\sqrt{x}+4)(\sqrt{x}-1)}=\frac{7-3\sqrt{x}}{\sqrt{x}+4}$
Ta có: \(M=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right)\cdot\dfrac{x-\sqrt{x}}{2\sqrt{x}+1}\)
\(=\left(\dfrac{\sqrt{x}+1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
Lời giải:
\(P=\frac{x+2}{(\sqrt{x})^3-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}\)
\(\frac{x+2}{\sqrt{x^3}-1}+\frac{(\sqrt{x}+1)(\sqrt{x}-1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}-\frac{1}{\sqrt{x}-1}\)
\(=\frac{x+2}{\sqrt{x^3}-1}+\frac{x-1}{\sqrt{x^3}-1}-\frac{1}{\sqrt{x}-1}\)
\(=\frac{x+2+x-1}{\sqrt{x^3}-1}-\frac{1}{\sqrt{x}-1}\)
\(=\frac{2x+1}{\sqrt{x^3}-1}-\frac{1}{\sqrt{x}-1}=\frac{2x+1}{\sqrt{x^3}-1}-\frac{x+\sqrt{x}+1}{\sqrt{x^3}-1}\)
\(=\frac{2x+1-(x+\sqrt{x})}{\sqrt{x^3}-1}=\frac{x-\sqrt{x}}{\sqrt{x^3}-1}\)
\(=\frac{\sqrt{x}(\sqrt{x}-1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
b) \(P-\frac{1}{3}=\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{3}=\frac{2\sqrt{x}-(x+1)}{3(x+\sqrt{x}+1)}\)
\(=\frac{-(\sqrt{x}-1)^2}{3(x+\sqrt{x}+1)}\)
Với \(x\neq 1, x\geq 0\Rightarrow -(\sqrt{x}-1)^2< 0; x+\sqrt{x}+1>0\)
Do đó: \(P-\frac{1}{3}< 0\Rightarrow P< \frac{1}{3}\)
Ta có: \(P=\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)
\(=\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{2x+1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)
\(A=\dfrac{2x}{x-1}-\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\)
\(\Leftrightarrow A=\dfrac{2x-\sqrt{x}-1+\sqrt{x}-1}{x-1}=\dfrac{2x-2}{x-1}=\dfrac{2\left(x-1\right)}{x-1}=2\)
\(A=\dfrac{2x-\sqrt{x}-1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ A=\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=2\)