K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=sin\left(\dfrac{7}{9}pi\right)+sin\left(\dfrac{pi}{9}\right)-sin\left(\dfrac{5}{9}pi\right)\)

\(=2\cdot sin\left(\dfrac{1}{2}\cdot\dfrac{8}{9}pi\right)\cdot cos\left(\dfrac{1}{2}\cdot\dfrac{6}{9}pi\right)-sin\left(\dfrac{5}{9}pi\right)\)

\(=sin\left(\dfrac{4}{9}pi\right)-sin\left(\dfrac{5}{9}pi\right)\)

\(=2\cdot cos\left(\dfrac{\dfrac{4}{9}pi+\dfrac{5}{9}pi}{2}\right)\cdot sin\left(\dfrac{\dfrac{4}{9}pi-\dfrac{5}{9}pi}{2}\right)\)

=0

6 tháng 5 2021

Ta có \(F=sin^2\dfrac{\pi}{6}+...+sin^2\pi=\left(sin^2\dfrac{\pi}{6}+sin^2\dfrac{5\pi}{6}\right)+\left(sin^2\dfrac{2\pi}{6}+sin^2\dfrac{4\pi}{6}\right)+\left(sin^2\dfrac{3\pi}{6}+sin^2\pi\right)=\left(sin^2\dfrac{\pi}{6}+cos^2\dfrac{\pi}{6}\right)+\left(sin^2\dfrac{2\pi}{6}+cos^2\dfrac{2\pi}{6}\right)+\left(1+0\right)=1+1+1=3\)

NV
29 tháng 4 2021

\(\pi< a< \dfrac{3\pi}{2}\Rightarrow\left\{{}\begin{matrix}sina< 0\\cosa< 0\end{matrix}\right.\)

\(sin\left(\dfrac{7\pi}{2}+a\right)=sin\left(4\pi-\dfrac{\pi}{2}+a\right)=sin\left(-\dfrac{\pi}{2}+a\right)=-sin\left(\dfrac{\pi}{2}-a\right)=-cosa>0\)

Đáp án A

20 tháng 10 2024

Yes

4 tháng 8 2021

Xem lại đề bài đi

 

 

4 tháng 8 2021

Đề sai nhiều chỗ vậy, lần sau ghi đúng đề đi.

\(cos3x+sin7x=2sin^2\left(\dfrac{\pi}{4}-\dfrac{5x}{2}\right)+2cos^2\dfrac{9x}{2}\)

\(\Leftrightarrow cos3x+sin7x=cos\left(\dfrac{\pi}{2}-5x\right)+1-2cos^2\dfrac{9x}{2}\)

\(\Leftrightarrow cos3x+sin7x=sin5x-cos9x\)

\(\Leftrightarrow2cos6x.cos3x+2cos6x.sinx=0\)

\(\Leftrightarrow2cos6x.\left(cos3x+sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos6x=0\\cos3x+sinx=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cos6x=0\\cos3x+cos\left(\dfrac{\pi}{2}-x\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cos6x=0\\2cos\left(\dfrac{\pi}{4}+x\right).cos\left(2x-\dfrac{\pi}{4}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cos6x=0\\cos\left(\dfrac{\pi}{4}+x\right)=0\\cos\left(2x-\dfrac{\pi}{4}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}6x=\dfrac{\pi}{2}+k\pi\\\dfrac{\pi}{4}+x=\dfrac{\pi}{2}+k\pi\\2x-\dfrac{\pi}{4}=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{12}+\dfrac{k\pi}{6}\\x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{3\pi}{8}+\dfrac{k\pi}{2}\end{matrix}\right.\)