K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2018

\(A=\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\)

\(A=1+\dfrac{1}{b}+\dfrac{1}{a}+\dfrac{1}{ab}\)

\(A=1+\dfrac{a+b}{ab}+\dfrac{a+b}{ab}\)

\(A=1+\dfrac{2}{ab}\)

Ta có:\(\left(a-b\right)^2\ge0\)

\(\Rightarrow a^2+b^2\ge2ab\)

\(\Rightarrow\left(a+b\right)^2\ge4ab\)

\(\Rightarrow ab\le\dfrac{1}{4}\)

\(\Rightarrow A\ge1+\dfrac{2}{\dfrac{1}{4}}=9\)

"="<=>a=b=0,5

17 tháng 5 2018

Áp dụng liên tiếp bất đẳng thức CauChy-Schwarz và AM-GM\(A=\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\)

\(A=1+\dfrac{1}{b}+\dfrac{1}{a}+\dfrac{1}{ab}\)

\(A\ge1+\dfrac{\left(1+1\right)^2}{a+b}+\dfrac{1}{\dfrac{\left(a+b\right)^2}{4}}\)

\(A\ge1+\dfrac{4}{a+b}+\dfrac{4}{\left(a+b\right)^2}=1+4+4=9\)

Dấu "=" xảy ra khi: \(a=b=\dfrac{1}{2}\)

8 tháng 8 2015

Một số bất đẳng thức thường được dùng (chứng minh rất đơn giản)

Với a, b > 0, ta có: 

\(a^2+b^2\ge2ab\)

\(\left(a+b\right)^2\ge4ab\)

\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Dấu "=" của các bất đẳng thức trên đều xảy ra khi a = b.

Phân phối số hạng hợp lí để áp dụng Côsi

\(1\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=\frac{4}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}\)

\(\ge6\)

Dấu "=" xảy ra khi a = b = 1/2.

\(2\text{) }P\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\ge4\)

\(3\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+4ab+\frac{1}{4ab}\)

\(\ge\frac{1}{\left(a+b\right)^2}+2\sqrt{\frac{1}{4ab}.4ab}+\frac{1}{\left(a+b\right)^2}\ge1+2+1=4\)

4 tháng 8 2015

Dự đoán dấu "=" và chọn điểm rơi phù hợp để áp dụng bất đẳng thức Trung bình cộng - Trung bình nhân

12 tháng 11 2018

\(A\ge\frac{\left(1+1\right)^2}{2a+b+a+2b}=\frac{4}{3\left(a+b\right)}=\frac{4}{3.16}=\frac{1}{12}\) ( Cauchy-Schwarz dạng Engel ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=8\)

9 tháng 6 2020

Mọi người giải nhanh giúp mìn với mình sắp kiểm tra T^T

16 tháng 1 2018

Tham khảo nè:

P=(a+b)/ab+2/(a+b) 
=(a+b)+2/(a+b) 
=(a+b)/2 +(a+b)/2 +2/(a+b) 
Ap dug cosi 
(a+b)/2 >=1 
(a+b)/2 +2/(a+b)>=2 
P>=1+2=3 
Mjn p=3 khi a=b=1