Cho a,b>0 và a+b=1 tìm Min A= (1+1/a)*(1+1/b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Một số bất đẳng thức thường được dùng (chứng minh rất đơn giản)
Với a, b > 0, ta có:
\(a^2+b^2\ge2ab\)
\(\left(a+b\right)^2\ge4ab\)
\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Dấu "=" của các bất đẳng thức trên đều xảy ra khi a = b.
Phân phối số hạng hợp lí để áp dụng Côsi
\(1\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=\frac{4}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}\)
\(\ge6\)
Dấu "=" xảy ra khi a = b = 1/2.
\(2\text{) }P\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\ge4\)
\(3\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+4ab+\frac{1}{4ab}\)
\(\ge\frac{1}{\left(a+b\right)^2}+2\sqrt{\frac{1}{4ab}.4ab}+\frac{1}{\left(a+b\right)^2}\ge1+2+1=4\)
\(A\ge\frac{\left(1+1\right)^2}{2a+b+a+2b}=\frac{4}{3\left(a+b\right)}=\frac{4}{3.16}=\frac{1}{12}\) ( Cauchy-Schwarz dạng Engel )
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=8\)
Tham khảo nè:
P=(a+b)/ab+2/(a+b)
=(a+b)+2/(a+b)
=(a+b)/2 +(a+b)/2 +2/(a+b)
Ap dug cosi
(a+b)/2 >=1
(a+b)/2 +2/(a+b)>=2
P>=1+2=3
Mjn p=3 khi a=b=1
\(A=\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\)
\(A=1+\dfrac{1}{b}+\dfrac{1}{a}+\dfrac{1}{ab}\)
\(A=1+\dfrac{a+b}{ab}+\dfrac{a+b}{ab}\)
\(A=1+\dfrac{2}{ab}\)
Ta có:\(\left(a-b\right)^2\ge0\)
\(\Rightarrow a^2+b^2\ge2ab\)
\(\Rightarrow\left(a+b\right)^2\ge4ab\)
\(\Rightarrow ab\le\dfrac{1}{4}\)
\(\Rightarrow A\ge1+\dfrac{2}{\dfrac{1}{4}}=9\)
"="<=>a=b=0,5
Áp dụng liên tiếp bất đẳng thức CauChy-Schwarz và AM-GM\(A=\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\)
\(A=1+\dfrac{1}{b}+\dfrac{1}{a}+\dfrac{1}{ab}\)
\(A\ge1+\dfrac{\left(1+1\right)^2}{a+b}+\dfrac{1}{\dfrac{\left(a+b\right)^2}{4}}\)
\(A\ge1+\dfrac{4}{a+b}+\dfrac{4}{\left(a+b\right)^2}=1+4+4=9\)
Dấu "=" xảy ra khi: \(a=b=\dfrac{1}{2}\)