GPT: 5x3+6x2 +12x +8 =0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(x-2\right)^3=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
\(\Leftrightarrow\left(x-2\right)^3=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
1.
$4x^2y+5x^3-x^2y^2=x^2(4y+5x-y^2)$
2.
$5x(x-1)-3y(1-x)=5x(x-1)+3y(x-1)=(x-1)(5x+3y)$
3.
$4x^2-25=(2x)^2-5^2=(2x-5)(2x+5)$
4.
$6x-9-x^2=-(x^2-6x+9)=-(x-3)^2$
5.
$x^2+4y^2+4xy=x^2+2.x.2y+(2y)^2=(x+2y)^2$
6.
$\frac{1}{64}-27x^3=(\frac{1}{4})^3-(3x)^3$
$=(\frac{1}{4}-3x)(\frac{1}{16}+\frac{3x}{4}+9x^2)$
7.
$x^3-6x^2+12x-8=x^3-3.x^2.2+3.x.2^2-2^3$
$=(x-2)^3$
8.
$x^2-x-y^2-y=(x^2-y^2)-(x+y)=(x-y)(x+y)-(x+y)$
$=(x+y)(x-y-1)$
9.
$5x-5y+ax-ay=5(x-y)+a(x-y)$
$=(x-y)(5+a)$
\(\left(x+2\right)^3-16\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left[\left(x+2\right)^2-16\right]=0\)
\(\Rightarrow\left(x+2\right)\left(x+2-4\right)\left(x+2+4\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x-2\right)\left(x+6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x-2=0\\x+6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=2\\x=-6\end{matrix}\right.\)
Vậy \(S=\left\{-2;2;-6\right\}\)
\(2x^3-6x^2+12x-8=0\)
\(\Rightarrow2x^3-2x^23+3.2^2-2^3=0\)
\(\Rightarrow\left(x-2\right)^3=0\)
\(\Rightarrow x-2=0\)
\(\Rightarrow x=2\)
a) \(\Rightarrow\left(x-1\right)^3=0\Rightarrow x=1\)
b) \(\Rightarrow\left(x^3-1\right)\left(x^3+1\right)=0\Rightarrow\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)(do \(\left\{{}\begin{matrix}x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\\x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\end{matrix}\right.\))
c) \(\Rightarrow4x\left(x^2-9\right)=0\Rightarrow4x\left(x-3\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
d) \(\Rightarrow\left(x-2\right)^3=0\Rightarrow x=2\)
a) \(x^3-3x^2+3x-1=0\Rightarrow\left(x-1\right)^3=0\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
b) \(x^6-1=0\Rightarrow\left(x^3\right)^2-1=0\Rightarrow\left(x^3-1\right)\left(x^3+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^3-1=0\\x^3+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
c) \(4x^3-36x=0\Rightarrow4x\left(x^2-36\right)=0\Rightarrow4x\left(x-6\right)\left(x+6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}4x=0\\x-6=0\\x+6=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\\x=-6\end{matrix}\right.\)
d) \(x^3-6x^2+12x-8=0\) (đề bài như vậy mới làm đc, nếu là +8 thì mình xin bó tay nhé)
\(\Rightarrow x^3-3\cdot x^2\cdot2+3\cdot x\cdot2^2-2^3=0\)
\(\Rightarrow\left(x-2\right)^3=0\Rightarrow x-2=0\Rightarrow x=2\)
b. M(x) = P(x) + Q(x) = 10x3 + 5x2 - 4x - 1 (0.5 điểm)
N(x) = P(x) - Q(x) = x2 - 9 (0.5 điểm)
c. x = 3, x = -3 có là nghiệm của N(x) vì N(3) = N(-3) = 0 (0.5 điểm)
d. A(x) = M(x) + 2N(x)
= 10x3 + 5x2 - 4x - 1 + 2(x2 - 9)
= 10x3 + 7x2 - 4x - 19 (0.5 điểm)
Thay x = 1 vào biểu thức ta có: A(1) = -6 (0.5 điểm)
\(pt\Leftrightarrow x^3+6x^2+12x+8=-4x^3\)
<=> \(\left(x+2\right)^3=-4x^3\)
<=> \(x+2=\sqrt[3]{-4}x\)
<=> \(x\left(1-\sqrt[3]{-4}\right)=-2\)
<=> \(x=\frac{2}{\sqrt[3]{-4}-1}\)