K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2015

<=> |x - 2| = 3 <=> x - 2 = 3 hoặc x - 2 = -3 

<=> x =5 hoặc x = -1

Vậy tổng bình phương các nghiệm là: 25 + 1 = 26

NV
24 tháng 12 2020

\(\Leftrightarrow x^2-4x+5+3\sqrt{x^2-4x+5}-2=0\)

Đặt \(\sqrt{x^2-4x+5}=t>0\)

\(\Rightarrow t^2+3t-2=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{-3+\sqrt{17}}{2}\\t=\dfrac{-3-\sqrt{17}}{2}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow x^2-4x+5=\dfrac{13-3\sqrt{17}}{2}\)

\(\Leftrightarrow x^2-4x+\dfrac{-3+3\sqrt{17}}{2}=0\)

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4^2-2\left(\dfrac{-3+3\sqrt{17}}{2}\right)=19-3\sqrt{17}\)

6 tháng 1 2021

(x-1)(x-3) =x^2-4x+3 chứ ạ?

8 tháng 3 2017

1/ nhân 4 cả 2 vế lên, vế trái sẽ trở thành (2x+1)(2x+2)^2(2x+3), nhân 2x+1 với 2x+3, cái bình phương phân tích ra
thành (4x^2+8x+3)(4x^2+8x+4)=72
đặt 4x^2+8x+4=a \(\left(a\ge0\right)\)

thay vào ta có (a-1)a=72 rồi bạn phân tích thành nhân tử sẽ có nghiệm là 9 và -8 loại được -8 thì nghiệm của a là 9
suy ra 2x+1=3 hoặc -3, tính ra được x rồi nhân vào với nhau

2/\(\Leftrightarrow5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=2\left[\left(x+1\right)+\left(x^2-x+1\right)\right]\)

đặt căn x+1=a, căn x^2-x+1=b (a,b>=0)
thay vào ra là \(2a^2-5ab+2b^2=0\\ \Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

suy ra a=2b hoặc b=2a, thay cái kia vào bình phương lên giải nốt phương trình rồi nhân nghiệm với nhau

10 tháng 3 2017

Nghiệm nguyên.

2x+3=(2x+1)+2

\(\left(1\right)\Leftrightarrow\left[\left(2x+1\right)\left(x+1\right)\right]^2+2\left(2x+1\right)\left(x+1\right)^2=18\\ \)

2x+1 luôn lẻ---> x+1 phải chẵn --> x phải lẻ---> x=2n-1

\(\left(4n+3\right)\left(2n\right)^2\left(4n+1\right)=18\)

18 không chia hết co 4 vậy vô nghiệm nguyên.

Viết diễn dải dài suy luận logic rất nhanh

NV
15 tháng 12 2020

\(\sqrt{2-f\left(x\right)}=f\left(x\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)\ge0\\f^2\left(x\right)+f\left(x\right)-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)=1\\f\left(x\right)=-2< 0\left(loại\right)\end{matrix}\right.\) 

\(\Rightarrow f\left(1\right)=f\left(2\right)=f\left(3\right)=1\)

\(\sqrt{2g\left(x\right)-1}+\sqrt[3]{3g\left(x\right)-2}=2.g\left(x\right)\)

\(VT=1.\sqrt{2g\left(x\right)-1}+1.1\sqrt[3]{3g\left(x\right)-2}\)

\(VT\le\dfrac{1}{2}\left(1+2g\left(x\right)-1\right)+\dfrac{1}{3}\left(1+1+3g\left(x\right)-2\right)\)

\(\Leftrightarrow VT\le2g\left(x\right)\)

Dấu "=" xảy ra khi và chỉ khi \(g\left(x\right)=1\)

\(\Rightarrow g\left(0\right)=g\left(3\right)=g\left(4\right)=g\left(5\right)=1\)

Để các căn thức xác định \(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)-1\ge0\\g\left(x\right)-1\ge0\end{matrix}\right.\)

Ta có:

\(\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+f\left(x\right).g\left(x\right)-f\left(x\right)-g\left(x\right)+1=0\)

\(\Leftrightarrow\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+\left[f\left(x\right)-1\right]\left[g\left(x\right)-1\right]=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)=1\\g\left(x\right)=1\end{matrix}\right.\) \(\Leftrightarrow x=3\)

Vậy tập nghiệm của pt đã cho có đúng 1 phần tử

17 tháng 10 2021

\(PT\Leftrightarrow x^2-x-3\sqrt{x^2-x-2}=0\\ \Leftrightarrow\left(x^2-x-6\right)-3\left(\sqrt{x^2-x-2}-2\right)=0\\ \Leftrightarrow\left(x^2-x-6\right)-\dfrac{3\left(x^2-x-6\right)}{\sqrt{x^2-x-2}+2}=0\\ \Leftrightarrow\left(x+2\right)\left(x-3\right)\left(1-\dfrac{3}{\sqrt{x^2-x-2}+2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\\1-\dfrac{3}{\sqrt{x^2-x-2}+2}=0\left(1\right)\end{matrix}\right.\)

Ta có \(\dfrac{3}{\sqrt{x^2-x-2}+2}\le\dfrac{3}{2}\Leftrightarrow1-\dfrac{3}{\sqrt{x^2-x-2}+2}\le-\dfrac{1}{2}< 0\) nên \(\left(1\right)\) vô nghiệm

Vậy pt có nghiệm \(S=\left\{-2;3\right\}\)

17 tháng 10 2021

1

\(ĐKXĐ:x>2\)

BPT đã cho tương đương với:

\(2log_2\sqrt{x+1}+log_2\left(x-2\right)\le2\)

\(\Leftrightarrow log_2\left(x+1\right)+log_2\left(x-2\right)\le2\)

\(\Leftrightarrow log_2\left(x^2-x-2\right)\le2\)\(\Leftrightarrow0< x^2-x-2\le2^2\)\(\Leftrightarrow\left[{}\begin{matrix}2< x\le3\\-2\le x< -1\left(l\right)\end{matrix}\right.\)

Vậy tổng các nghiệm nguyên của bpt là 3

21 tháng 12 2020

ĐK: \(x\ge2\)

\(pt\Leftrightarrow\sqrt{x-2}=3\sqrt{x^2-4}\)

\(\Leftrightarrow x-2=9x^2-36\)

\(\Leftrightarrow9x^2-x-34=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{17}{9}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x^2=4\)

6 tháng 4 2016

483 dùng hệ thức vi et pt bậc 4 là ra nhé bạn !@@

7 tháng 4 2016

http://olm.vn/hoi-dap/question/67687.html