giải phương trình
\(x^4+6y^2-7\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ...
Phương trình đầu tương đương:
\(2y^3+y=2\sqrt{1-x}-2x+\sqrt{1-x}\)
\(\Leftrightarrow2y^3+y=2\left(1-x\right)\sqrt{1-x}+\sqrt{1-x}\)
Đặt \(\sqrt{1-x}=a\ge0\)
\(\Rightarrow2y^3+y=2a^3+a\)
Hàm \(f\left(t\right)=2t^3+t\) có \(f'\left(t\right)=6t^2+1>0\) ;\(\forall t\Rightarrow f\left(t\right)\) đồng biến
\(\Rightarrow y=a\Leftrightarrow y=\sqrt{1-x}\Rightarrow y^2=1-x\) (với \(y\ge0\))
Thế xuống pt dưới:
\(\sqrt{4x+5}=2x^2-6x-1\)
Đặt \(\sqrt{4x+5}=2t-3\Rightarrow\left\{{}\begin{matrix}2t-3=2x^2-6x-1\\4x+5=4t^2-12t+9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t=x^2-3x+1\\x=t^2-3t+1\end{matrix}\right.\)
Hệ đối xứng, chắc tới đây bạn giải quyết được phần còn lại
(x2-xy-6y2)+(2x-6y)-10 =0
[(x2-3xy)+(2xy-6y2)] + 2(x-3y) -10 = 0
(x-3y).(x+2y) + 2(x-3y) -10 = 0
(x-3y).(x+2y+2)=10
vì x,y nguyên x-3y và x+2y+2 phải nguyên
mà 10=1.10=(-1).(-10)=2.5=(-2).(-5)=10.1=(-10).(-1)=5.2=(-5).(-2)
\(\hept{\begin{cases}x^4+y^2-4x^2-6y+9=0\\x^2y+x^2+2y-22=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x^2-2\right)^2+\left(y-3\right)^2=4\\\left(y-3\right)\left(x^2-2\right)+4\left(x^2-2\right)+4\left(y-3\right)=8\end{cases}}\)
Đặt \(\hept{\begin{cases}x^2-2=a\\y-3=b\end{cases}}\) thì ta có
\(\hept{\begin{cases}a^2+b^2=4\\ab+4\left(a+b\right)=8\end{cases}}\)
Tới đây thì quá đơn giản rồi nhé.
giải phương trình mà ko có dấu = sao giải ?
=0 ghi thiếu