K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
21 tháng 5 2021

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)

\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{10-9}{9.10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}< 1\)

21 tháng 5 2021

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\\ A< \frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\\ A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}\\ A< \frac{9}{10}< 1\Rightarrow A< 1\)

5 tháng 4 2018

Ta có 1/22<1/1.2

         1/32<1/2.3

         1/42<1/3.4

         ................

        1/8²<1/7.8

=>B<1/1.2+1/2.3+1/3.4+...+1/7.8

=>B<1-1/2+1/2-1/3+1/3-1/4+...+1/7-1/8

=>B<1-1/8

Vậy B < 1

18 tháng 3 2024

ad a zwe zxdb WE4RBTa

2 tháng 5 2018

b=1/22+1/32+1/42+...+1/82<1/1.2+1/2.3+1/3.4+......+1/7.8

b=1-1/2+1/2-1/3+1/3-1/4+....+1/7-1/8

b=1-1/8

b=7/8

<=>b<1

k cho mink nha

18 tháng 3 2024

b=1/22+1/32+1/42+...+1/82<1/1.2+1/2.3+1/3.4+......+1/7.8

b=1-1/2+1/2-1/3+1/3-1/4+....+1/7-1/8

b=1-1/8

b=7/8

<=>b<1
owo

30 tháng 4 2023

bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
 cũng bị ép);-;

18 tháng 1 2022

hỏi chấm / nà ní /tôi là ai và đây là đâu

19 tháng 1 2022

vy dog cút dell trả lời cút xéo 

4 tháng 5 2018

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)

\(\Rightarrow B=\frac{1}{2^2}+...+\frac{1}{8^2}< \frac{1}{1.2}+...+\frac{1}{7.8}\)

\(\Rightarrow\frac{1}{2^2}+...+\frac{1}{8^2}< 1-\frac{1}{2}+...+\frac{1}{7}-\frac{1}{8}\)

\(\Rightarrow\frac{1}{2^2}+...+\frac{1}{8^2}< 1-\frac{1}{8}\)

\(\Rightarrow\frac{1}{2^2}+...+\frac{1}{8^2}< \frac{7}{8}< 1\)

\(\Rightarrow B< 1\)

2 tháng 5 2020

Mình đồng tình với bạn

A=\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+.........+\(\frac{1}{100^2}\)

A=\(\frac{1}{3^2}\)<\(\frac{1}{2.3}\)

 \(\frac{1}{4^2}\)<\(\frac{1}{3.4}\)

\(\Rightarrow\)\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+...+\(\frac{1}{100^2}\)<\(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)

=>\(\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}\)\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{99}-\frac{1}{100}\)

=> \(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+.....+\(\frac{1}{100^2}\)\(\frac{1}{2}-\frac{1}{100}\)

=>A< \(\frac{1}{2}\)

21 tháng 4 2019

Ta có: \(A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)

Ta thấy: \(\frac{1}{3^2}< \frac{1}{2\cdot3};\frac{1}{4^2}< \frac{1}{3\cdot4};\frac{1}{5^2}< \frac{1}{4\cdot5}...\frac{1}{100^2}< \frac{1}{99\cdot100}\)

\(\Rightarrow A< \frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{99\cdot100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A=\frac{1}{2}-\frac{1}{100}\Rightarrow A< \frac{1}{2}\left(ĐPCM\right)\)

9 tháng 4 2019

Có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{8^2}< \frac{1}{7.8}\)

\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}\)

\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)

\(\Rightarrow B< 1-\frac{1}{8}< 1\)

\(\Rightarrow B< 1\) \(\Rightarrowđpcm\)