cho a>b >c và a2 - 6b2 =ab . tinh gt của bieu thuc a= 2ab/ a^2 -7b^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2a-b\right)^2=\left(5b\right)^2\)
\(\orbr{\begin{cases}2a=b+5b\\2a=b-5b\left(loai\right)\end{cases}}\)
a=3b
\(A=\frac{6b^2}{2b^2}=3\)
a)Từ \(2\left(a^2+b^2\right)=5ab\)\(\Rightarrow2a^2+2b^2-5ab=0\)
\(\Rightarrow2a^2-4ab-ab+2b^2=0\)
\(\Rightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)
\(\Rightarrow\left(2a-b\right)\left(a-2b\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2a-b=0\\a-2b=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}2a=b\\a=2b\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}a=\frac{b}{2}\\a=2b\end{cases}}\)
Thay vào tính được P
b)sai đề
\(A^2=\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}+2\left(b^2+c^2+a^2\right)=\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}+2\)
Áp dụng Côsi: \(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}\ge2\sqrt{\frac{a^2b^2}{c^2}.\frac{b^2c^2}{a^2}}=2\sqrt{b^4}=2b^2\)
Tương tự \(\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}\ge2c^2;\text{ }\frac{c^2a^2}{b^2}+\frac{a^2b^2}{c^2}\ge2a^2\)
\(\Rightarrow2\left(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}\right)\ge2\left(a^2+b^2+c^2\right)=2\)
\(\Rightarrow\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}\ge1\)
\(\Rightarrow A^2\ge1+2=3\)
\(\Rightarrow A\ge\sqrt{3}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{\sqrt{3}}\)
\(A=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab\)
\(=\frac{2}{a^2+b^2}+\frac{2}{2ab}+\frac{32}{ab}+2ab+\frac{2}{ab}\)
\(\ge\frac{2\sqrt{2^2}}{\left(a+b\right)^2}+2\sqrt{\frac{32}{ab}\cdot2ab}+\frac{2}{\frac{\left(a+b\right)^2}{4}}\)
\(\ge\frac{1}{2}+2\cdot8+\frac{1}{2}=17\)