Tìm GTNN biểu thức :
M= 2x\(^2\) + 5y\(^2\) - 2xy + 2y + 2x .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=-2x^2-y^2-2xy+4x+2y+2\)
\(-A=2x^2+y^2+2xy-3x-2y-2\)
\(-A=\left(x^2+2xy+y^2\right)+x^2-4x-2y-2\)
\(-A=\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]+\left(x^2-2x+1\right)-4\)
\(-A=\left(x+y-1\right)^2+\left(x-1\right)^2-4\)
Mà \(\left(x+y-1\right)^2\ge0\forall x;y\)
\(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge-4\)
\(\Leftrightarrow A\le4\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x+y-1=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=0\\x=1\end{cases}}\)
Vậy \(A_{Max}=4\Leftrightarrow\left(x;y\right)=\left(1;0\right)\)
Đặt \(B=x^2-4xy+5y^2+10x-22y+27\)
\(B=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+27\)
\(B=\left[\left(x-2y\right)^2+2\left(x-2y\right)\times5+25\right]+\)\(\left(y^2-2y+1\right)+1\)
\(B=\left(x-2y+5\right)^2+\left(y-1\right)^2+1\)
Mà \(\left(x-2y+5\right)^2\ge0\forall x;y\)
\(\left(y-1\right)^2\ge0\forall y\)
\(\Rightarrow B\ge1\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vậy \(B_{Min}=1\Leftrightarrow\left(x;y\right)=\left(-3;1\right)\)
\(2M=4x^2+10y^2-4xy+4x+4y\)
\(2M=4x^2+y^2+1-4xy+4x-2y+9y^2+6y+1-2\)
\(2M=\left(2x-y+1\right)^2+\left(3y+1\right)^2-2\ge-2\)
\(\Rightarrow M\ge-1\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}y=-\frac{1}{3}\\x=-\frac{2}{3}\end{matrix}\right.\)
\(M=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+3y^2-2\)
\(M=\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2+3y^2-2\ge-2\)
\(A=2x^2+5y^2-2xy+2x+2y\)
\(=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(4y^2+2.2y.\frac{1}{2}+\frac{1}{4}\right)-1-\frac{1}{4}\)
\(=\left(x-y\right)^2+\left(x+1\right)^2+\left(2y+\frac{1}{2}\right)^2-\frac{5}{4}\)
Ta thấy: \(\left(x-y\right)^2\ge0;\left(x+1\right)^2\ge0;\left(2y+\frac{1}{2}\right)^2\ge0\forall x;y\)
\(\Rightarrow\left(x-y\right)^2+\left(x+1\right)^2+\left(2y+\frac{1}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
\(\Rightarrow Min_A=-\frac{5}{4}\).
Lời giải:
$A=2x^2+y^2+2xy+2x-2y+2023$
$=(x^2+2xy+y^2)+x^2+2x-2y+2023$
$=(x+y)^2-2(x+y)+x^2+4x+2023$
$=(x+y)^2-2(x+y)+1+(x^2+4x+4)+2018$
$=(x+y-1)^2+(x+2)^2+2018\geq 0+0+2018=2018$
Vậy GTNN của $A$ là $2018$. Giá trị này đạt tại $x+y-1=x+2=0$
$\Leftrightarrow x=-2; y=3$
Ta có: \(A=2x^2+2y^2-2xy-2x-2y+2017\)
\(=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+2015\)
\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2+2015\ge2015\)
Dấu "=" xảy ra khi \(x=y=1\)
Vậy \(A_{MIN}=2015\Leftrightarrow x=y=1.\)
\(F=2x^2+y^2+2y\left(x+1\right)+\left(x+1\right)^2-x^2-2x-1-2x+2\)
\(=\left(y+x+1\right)^2+x^2-4x+1\)
\(=\left(x+y+1\right)^2+\left(x-2\right)^2-3\ge-3\forall x;y\)
=> \(MinF=-3\Leftrightarrow\left\{{}\begin{matrix}x+y+1=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)
\(M=2x^2+5y^2-2xy+2y+2x=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(4y^2+2y+\dfrac{1}{4}\right)-\dfrac{5}{4}=\left(x-y\right)^2+\left(x+1\right)^2+\left(2y+\dfrac{1}{2}\right)^2-\dfrac{5}{4}\)ta có: (x - y)^2 ≥ 0; (x+1)^2≥ ; (2y+1/2)^2 ≥ 0
=> gtnn M = -5/4
ách nhầm:
\(M=2x^2+5y^2-2xy+2y+2x=\left(x^2+2x+1\right)+\left(x^2-2xy+y^2\right)+4\left(y^2+\dfrac{1}{2}y+\dfrac{1}{16}\right)+\dfrac{3}{4}=\left(x+1\right)^2+\left(x-y\right)^2+4\left(y-\dfrac{1}{4}\right)^2+\dfrac{3}{4}\)
ta có: (x - y)^2 ≥ 0; (x+1)^2≥ ; 4(y+1/4)^2 ≥ 0
vậy gtnn M = 3/4 khi \(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x+1\right)^2=0\\\left(y-\dfrac{1}{4}\right)^2=0\end{matrix}\right.\)
!!?