K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2021

thiếu đề r bạn \(a^2+b^2\ge\) 

11 tháng 9 2021

cảm ơn bạn đã nhắc mk

 

11 tháng 9 2021

\(a^2+b^2+c^2\text{≥}ab+bc+ca\)

\(2\left(a^2+b^2+c^2\right)\text{≥}2\left(ab+bc+ca\right)\)

\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\text{≥}0\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\text{≥}0\) luôn đúng

11 tháng 9 2021

\(a^2+b^2\ge2ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\left(luon-dung\forall a,b\right)\)

dau"=" xay ra \(\Leftrightarrow a=b\)

\(\Rightarrow a^2+b^2\ge2ab\)

\(\Rightarrow b^2+c^2\ge2ac\)

\(\Rightarrow a^2+c^2\ge2ac\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

dau"=" xay ra \(\Leftrightarrow a=b=c\)

11 tháng 9 2021

\(a^2+b^2\ge2ab\\ \Leftrightarrow a^2-2ab+b^2\ge0\\ \Leftrightarrow\left(a-b\right)^2\ge0\left(luôn.đúng\right)\)

Dấu \("="\Leftrightarrow a=b\)

Ta có \(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\a^2+c^2\ge2ac\end{matrix}\right.\)

Cộng vế theo vế của 3 BĐT, ta được:

\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+ac+bc\right)\\ \Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

Dấu \("="\Leftrightarrow a=b=c\)

17 tháng 9 2017

\(a,\left(a+b\right)^2\ge4ab\\ \Leftrightarrow a^2+2ab+b^2-4ab\ge0\\ \Leftrightarrow a^2-2ab+b^2\ge0\\ \Leftrightarrow\left(a-b\right)^2\ge0\left(đúng\right)\)

Do đó \(\left(a+b\right)^2\ge4ab\)(đpcm)

Các câu sau tương tự

4 tháng 9 2017

ta áp dụng cô-si la ra 
a^2+b^2+c^2 ≥ ab+ac+bc 
̣̣(a - b)^2 ≥ 0 => a^2 + b^2 ≥ 2ab (1) 
(b - c)^2 ≥ 0 => b^2 + c^2 ≥ 2bc (2) 
(a - c)^2 ≥ 0 => a^2 + c^2 ≥ 2ac (3) 
cộng (1) (2) (3) theo vế: 
2(a^2 + b^2 + c^2) ≥ 2(ab+ac+bc) 
=> a^2 + b^2 + c^2 ≥ ab+ac+bc 
dấu = khi : a = b = c

4 tháng 9 2017

Bạn cm hộ mình cô si la dc k mình chưa học đến

7 tháng 9 2017

A) a2+b2+c2+ab+bc+ca>=0 (*)

<=> 2a2+2b2+2c2+2ab+2bc+2ca>=0

<=> (a2+2ab+b2)+(b2+2bc+c2)+(c2+2ca+a2)>=0

<=> (a+b)2+(b+c)2+(c+a)2>=0

BĐT cuối luôn đúng với mọi a,b,c 

Vậy BĐT (*) đc cm

Phần B cũng tương tự nhé

7 tháng 9 2017

a) Ta có : a2 + b2 + c2 + ab + bc + ca = (a + b + c)2

Mà \(\left(a+b+c\right)^2\ge0\forall x\)

Nên : a2 + b2 + c2 + ab + bc + ca \(\ge0\forall x\)

b) hình như sai đề rồi bạn à !

15 tháng 4 2019

1. (a+b)^2 ≥ 4ab

<=> a2+2ab+b2≥ 4ab

<=> a2+2ab+b2-4ab≥ 0

<=> a2-2ab+b2≥ 0

<=> (a-b)^2 ≥ 0 ( luôn đúng )

15 tháng 4 2019

2. a^2 + b^2 + c^2 ≥ ab + bc + ca

<=> 2a^2 + 2b^2 + 2c^2 ≥ 2ab + 2bc + 2ca

<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca ≥ 0

<=> (a^2- 2ab+b^2) + (b^2-2bc+c^2) + (c^2-2ca+a^2) ≥ 0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0 ( luôn đúng)