3x^2 −3x(−2+x)=36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x^2-3x=36\)
\(\Leftrightarrow x^2-x=12\)
\(\Leftrightarrow x^2-x-12=0\)
\(\Leftrightarrow\left(x^2-4x\right)+\left(3x-12\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+3\right)=0\)
Dễ rồi tự làm
\(3x^2-3x\left(-2+x\right)=36\)
\(=3x^2+6x-3x=36\)
\(=3x^2-3x=36\)
\(=3x\left(x-3\right)=36\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x=36\\x-3=36\end{cases}\Leftrightarrow\orbr{\begin{cases}x=36:3=12\\x=36+3=39\end{cases}}}\)
Vậy S = { 12 ; 39 }
\(d,\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=15\\ \Leftrightarrow24x=-10\Leftrightarrow x=-\dfrac{5}{12}\\ e,\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=17\\ \Leftrightarrow9x=10\Leftrightarrow x=\dfrac{10}{9}\\ f,\Leftrightarrow9x^2+18x+9-18x=36+x^3-27\\ \Leftrightarrow x^3-9x^2=0\Leftrightarrow x^2\left(x-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)
1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)
=-27x^3-18x^2+4x+10
2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27
=7x^3+37x^2+46x+33
5:
\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)
\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)
=7x^3-48x^2+8x-35
\(a,3x+2\left(5-x\right)=0\)
\(\Rightarrow3x+10-2x=0\)
\(\Rightarrow x+10=0\)
\(\Rightarrow x=-10\)
\(b,x\left(2x-1\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4,5\right)=3,5\)
\(\Rightarrow\left(2x^2-x\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4,5\right)=3,5\)
\(\Rightarrow2x^3+9x^2-5x-2x^3-9x^2-4,5=3,5\)
\(\Rightarrow-5x-4,5=3,5\)
\(\Rightarrow-5x=8\)
\(\Rightarrow x=-\dfrac{8}{5}\)
\(c,3x^2-3x\left(x-2\right)=36\)
\(\Rightarrow3x^2-3x^2+6x=36\)
\(\Rightarrow6x=36\)
\(\Rightarrow x=6\)
\(d,\left(3x^2-x+1\right)\left(x-1\right)=x^2\left(4-3x\right)=\dfrac{5}{2}\)
\(\Rightarrow3x^3-3x^2-x^2+x+x-1+4x^2-3x^3=\dfrac{5}{2}\)
\(\Rightarrow2x-1=\dfrac{5}{2}\)
\(\Rightarrow2x=\dfrac{7}{2}\)
\(\Rightarrow x=\dfrac{7}{4}\)
a, Ta có : \(\left(x-1\right)\left(x^2+5x-2\right)-x^3+1=0\)
=> \(\left(x-1\right)\left(x^2+5x-2\right)-\left(x^3-1\right)=0\)
=> \(\left(x-1\right)\left(x^2+5x-2\right)-\left(x-1\right)\left(x^2+x+1\right)=0\)
=> \(\left(x-1\right)\left(x^2+5x-2-x^2-x-1\right)=0\)
=> \(\left(x-1\right)\left(4x-3\right)=0\)
=> \(\left[{}\begin{matrix}x-1=0\\4x-3=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=1\\x=\frac{3}{4}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{1,\frac{3}{4}\right\}\)
b, Ta có : \(5\left(x^2+3x\right)-9\left(3x+3\right)=x^2-36\)
=> \(5x^2+15x-27x-27=x^2-36\)
=> \(5x^2+15x-27x-27-x^2+36=0\)
=> \(4x^2-12x+9=0\)
=> \(\left(2x-3\right)^2=0\)
=> \(x=\frac{3}{2}\)
Vậy phương trình có tập nghiệm là \(S=\left\{\frac{3}{2}\right\}\)
\(a.\left(x-1\right)\left(x^2+5x-2\right)-x^3+1=0\\ \Leftrightarrow\left(x-1\right)\left(x^2+5x-2\right)-\left(x^3-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x^2+5x-2\right)-\left(x-1\right)\left(x^2+x+1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x^2+5x-2-x^2-x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(4x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\4x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{3}{4}\end{matrix}\right.\)
Vậy pt có tập nghiệm \(S=\left\{1;\frac{3}{4}\right\}\)
\(b.5\left(x^2+3x\right)-9\left(3x+3\right)=x^2-36\\ \Leftrightarrow5x^2+15x-27x-27=x^2-36\\ \Leftrightarrow5x^2+15x-27x-27-x^2+36=0\\ \Leftrightarrow4x^2-12x+9=0\\ \Leftrightarrow\left(2x-3\right)^2=0\\ \Leftrightarrow x=\frac{3}{2}\)
Vậy pt có tập nghiệm \(S=\left\{\frac{3}{2}\right\}\)
Chúc bạn học tốt!!!!!!!!!!!
\(3x^2-3x\left(-2+x\right)=36\)
\(\Leftrightarrow3x^2+6x-3x^2-36=0\)
\(\Leftrightarrow6x-36=0\)
\(\Leftrightarrow x=6\)