K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2018

Áp dụng Cauchy Schwarz dạng Engel có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{6}=\dfrac{3}{2}\left(a,b,c\le6\right)\)

Dấu ''='' xảy ra khi \(a=b=c=2\)

6 tháng 5 2018

Áp dụng bất đẳng thức Cauchy - Schwarz, ta được:

\(B=\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\ge\dfrac{\left(1+1+1\right)^2}{1+a+1+b+1+c}\)

\(\Rightarrow B\ge\dfrac{9}{3+a+b+c}\) (1)

\(a+b+c\le3\Rightarrow3+a+b+c\le6\)

\(\Rightarrow\dfrac{9}{3+a+b+c}\ge\dfrac{9}{6}=\dfrac{3}{2}\) (2)

Từ (1),(2) \(\Rightarrow B\ge\dfrac{3}{2}\)

=> MinB = \(\dfrac{3}{2}\Leftrightarrow a=b=c=1\)

Vậy MinB = \(\dfrac{3}{2}\) khi a = b = c = 1

Theo BĐT Cauchy ta có :

\(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\ge\dfrac{9}{3+a+b+c}=\dfrac{9}{6}=\dfrac{3}{2}\)

Vậy \(MAX_B=\dfrac{3}{2}\)

Dấu \("="\) xảy ra khi \(a=b=c=1\)

NV
27 tháng 1 2021

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=9\)

\(\Rightarrow3.P\ge9\Rightarrow P\ge3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

11 tháng 3 2018

A=\(\left(a+b\right)\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\)

= \(\dfrac{a}{a}+\dfrac{b}{b}+\dfrac{a}{b}+\dfrac{b}{a}\)

= \(2+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\)

Áp dụng BĐT cô si cho 2 số ta có

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}\)

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)

\(2+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\ge4\)

⇔ A ≥4

=> Min A =4

dấu "=" xảy ra khi

\(\dfrac{a}{b}=\dfrac{b}{a}\)

⇔a2=b2

⇔a=b

vậy Min A =4 khi a=b

11 tháng 3 2018

b,c tương tự Nguyễn Thiện Minh

8 tháng 8 2023

Ta có:

\(P=\dfrac{a+3}{a+1}+\dfrac{b+3}{b+1}+\dfrac{c+3}{c+1}\)

\(P=3+2.\left(\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}\right)\)

\(P\ge3+2.\dfrac{9}{a+b+c+3}=6\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\).

Vậy \(min_P=6\), xảy ra khi \(a=b=c=1\)

27 tháng 4 2017

Đề thiếu , a+b+c = ?

8 tháng 12 2018

đk gì nữa ko bạn

9 tháng 12 2018

\(a+b+c\ge\dfrac{1}{3}\)hình như là thêm đk này nữa

9 tháng 6 2018

Làm lại :v

\(\dfrac{a}{1+b}+\dfrac{b}{1+a}+\dfrac{1}{a+b}\)

\(\ge\dfrac{a}{a+2b}+\dfrac{b}{2a+b}+\dfrac{1}{a+b}\)

\(=\dfrac{a^2}{a^2+2ab}+\dfrac{b^2}{2ab+b^2}+\dfrac{1}{a+b}\)

\(\ge\dfrac{\left(a+b\right)^2}{\left(a+b\right)^2+2ab}+\dfrac{1}{a+b}\ge\dfrac{\left(a+b\right)^2}{\left(a+b\right)^2+\dfrac{\left(a+b\right)^2}{2}}+\dfrac{1}{a+b}\)

\(=\dfrac{\left(a+b\right)^2}{\dfrac{3}{2}\left(a+b\right)^2}+\dfrac{1}{a+b}=\dfrac{2}{3}+\dfrac{1}{a+b}\ge\dfrac{2}{3}+1=\dfrac{5}{3}\)

\("="\Leftrightarrow a=b=\dfrac{1}{2}\)

9 tháng 6 2018

Thật ra bài này t đã làm rồi,mà méo rảnh đi mò link,bạn rảnh thì có thể tìm nhé