K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\dfrac{2x+1}{6}-\dfrac{x-2}{4}=\dfrac{3-2x}{3}-x\)

\(\Leftrightarrow4x+2-3x+6=12-8x-12x\)

\(\Leftrightarrow x+8+20x-12=0\)

\(\Leftrightarrow x=\dfrac{4}{21}\)

21 tháng 1 2022

đặt 1/2x-y là a

1/x+y là b

hpt ta đc:

3.a-6.b=1

a-b=0

( giải đi pạn)

b: \(\Leftrightarrow\dfrac{20}{x}-\dfrac{20}{x+20}=\dfrac{1}{6}\)

=>\(\dfrac{20x+400-20x}{x\left(x+20\right)}=\dfrac{1}{6}\)

=>x*(x+20)=400*6=2400

=>x^2+20x-2400=0

=>(x+60)(x-40)=0

=>x=-60 hoặc x=40

c: \(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\)

=>(2x+1)^2-(2x-1)^2=8

=>4x^2+4x+1-4x^2+4x-1=8

=>8x=8

=>x=1(nhận)

9 tháng 8 2023

câu b sai đề rồi anh ơi và câu a đâu rồi ạ

=>4x-6(2x+1)=2x-3x

=>4x-12x-6+x=0

=>-7x=6

hay x=-6/7

25 tháng 1 2022

\(\dfrac{x}{3}-\dfrac{2x+1}{2}=\dfrac{x}{6}-\dfrac{x}{4}\)

\(\Leftrightarrow\dfrac{4x}{12}-\dfrac{6\left(2x+1\right)}{12}=\dfrac{2x}{12}-\dfrac{3x}{12}\)

\(\Leftrightarrow4x-6\left(2x+1\right)=2x-3x\)

\(\Leftrightarrow4x-12x-6=-x\)

\(\Leftrightarrow4x-12x-6+x=0\)

\(\Leftrightarrow-7x-6=0\)

\(\Leftrightarrow x=-\dfrac{6}{7}\)

a) ĐKXĐ: \(x\ne0\)

Ta có: \(\dfrac{1}{3x}+\dfrac{1}{2x}=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{4}{12x}+\dfrac{6}{12x}=\dfrac{3x}{12x}\)

Suy ra: \(3x=10\)

\(\Leftrightarrow x=\dfrac{10}{3}\)(thỏa ĐK)

Vậy: \(S=\left\{\dfrac{10}{3}\right\}\)

b) ĐKXĐ: \(x\ne0\)

Ta có: \(\dfrac{3}{8x}-\dfrac{1}{2x}=\dfrac{1}{x^2}\)

\(\Leftrightarrow\dfrac{3x}{8x^2}-\dfrac{4x}{8x^2}=\dfrac{8}{8x^2}\)

Suy ra: \(3x-4x=8\)

\(\Leftrightarrow-x=8\)

hay x=-8(thỏa ĐK)

Vậy: S={-8}

c)ĐKXĐ: \(x\ne0\)

Ta có: \(\dfrac{1}{2x}+\dfrac{3}{4x}=\dfrac{5}{2x^2}\)

\(\Leftrightarrow\dfrac{2x}{4x^2}+\dfrac{3x}{4x^2}=\dfrac{10}{4x^2}\)

Suy ra: 2x+3x=10

\(\Leftrightarrow5x=10\)

hay x=2(thỏa ĐK)

Vậy: S={2}

16 tháng 2 2021

d, \(\dfrac{2a}{x+a}=1\) (x \(\ne\) -a)

\(\Leftrightarrow\) \(\dfrac{2a}{x+a}-\dfrac{x+a}{x+a}=0\)

\(\Leftrightarrow\) \(\dfrac{a-x}{x+a}=0\)

\(\Leftrightarrow\) a - x = 0 (x + a \(\ne\) 0)

\(\Leftrightarrow\) x = a (TM)

Vậy S = {a}

Chúc bn học tốt!

a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

Ta có: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)

\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}\)

Suy ra: \(x^2+3x+2-5x+10=12+x^2-4\)

\(\Leftrightarrow x^2-2x+12-8-x^2=0\)

\(\Leftrightarrow-2x+4=0\)

\(\Leftrightarrow-2x=-4\)

hay x=2(loại)

Vậy: \(S=\varnothing\)

b) Ta có: \(\left|2x+6\right|-x=3\)

\(\Leftrightarrow\left|2x+6\right|=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+6=x+3\left(x\ge-3\right)\\-2x-6=x+3\left(x< -3\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-x=3-6\\-2x-x=3+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\)

Vậy: S={-3}

18 tháng 1 2018

Đặt \(u=x^2-2x+2\)

=> Pt tương đương :

\(\dfrac{1}{u}+\dfrac{2}{u+1}=\dfrac{6}{u+2}\)

\(\Leftrightarrow\dfrac{\left(u+1\right)\left(u+2\right)+2u\cdot\left(u+2\right)}{u\left(u+1\right)\left(u+2\right)}=\dfrac{6u\left(u+1\right)}{u\left(u+1\right)\left(u+2\right)}\)

\(\Leftrightarrow\left(u+1\right)\left(u+2\right)+2u\left(u+2\right)=6u\left(u+1\right)\)

\(\Leftrightarrow u^2+3u+2+2u^2+4u=6u^2+6u\)

\(\Leftrightarrow-3u^2+u+2=0\)

\(\Rightarrow\left[{}\begin{matrix}u=1\\u=-\dfrac{2}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-2x+2=1\\x^2-2x+2=-\dfrac{2}{3}\end{matrix}\right.\Rightarrow x=1\)

Kết luận \(x=1\)

18 tháng 1 2018

\(pt\Leftrightarrow\dfrac{1}{\left(x-1\right)^2+1}+\dfrac{2}{\left(x-1\right)^2+2}=\dfrac{6}{\left(x-1\right)^2+3}\)

Đặt: \(\left(x-1\right)^2=t\ge0\)

\(pt\Leftrightarrow\dfrac{1}{t+1}+\dfrac{2}{t+2}=\dfrac{6}{t+3}\)

\(\Rightarrow\dfrac{t+2+2\left(t+1\right)}{\left(t+1\right)\left(t+2\right)}=\dfrac{6}{t+3}\)

\(\Rightarrow\dfrac{t+2+2t+2}{\left(t+1\right)\left(t+2\right)}=\dfrac{6}{t+3}\)

\(\Rightarrow\dfrac{3t+4}{\left(t+1\right)\left(t+2\right)}=\dfrac{6}{t+3}\)

\(\Rightarrow\left(3t+4\right)\left(t+3\right)=6\left(t+1\right)\left(t+2\right)\)

Phân tích ra:v

1: Sửa đề: 2/x+2

\(\dfrac{2x+1}{x^2-4}+\dfrac{2}{x+2}=\dfrac{3}{2-x}\)

=>\(\dfrac{2x+1+2x-4}{x^2-4}=\dfrac{-3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

=>4x-3=-3x-6

=>7x=-3

=>x=-3/7(nhận)

2: \(\Leftrightarrow\dfrac{\left(3x+1\right)\left(3-x\right)+\left(3+x\right)\left(1-3x\right)}{\left(1-3x\right)\left(3-x\right)}=2\)

=>9x-3x^2+3-x+3-9x+x-3x^2=2(3x-1)(x-3)

=>-6x^2+6=2(3x^2-10x+3)

=>-6x^2+6=6x^2-20x+6

=>-12x^2+20x=0

=>-4x(3x-5)=0

=>x=5/3(nhận) hoặc x=0(nhận)

3: \(\Leftrightarrow x\cdot\dfrac{8}{3}-\dfrac{2}{3}=1+\dfrac{5}{4}-\dfrac{1}{2}x\)

=>x*19/6=35/12

=>x=35/38