K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(A=3x^2+18x+33\)

\(=3\left(x^2+6x+11\right)\)

\(=3\left(x^2+6x+9+2\right)\)

\(=3\left(x+3\right)^2+6\ge6>0\forall x\)

b: \(A_{min}=6\) khi x=-3

14 tháng 10 2018

a, A = 3x2 + 18x + 33 => 3A = 9x2 + 54x + 99 = (3x)2 + 2.3x.9 + 81 + 18 = (3x + 9)2 + 18

Vì (3x + 9)2 > hoặc = 0 với mọi x => (3x + 9)2 + 18 luôn > 0 => 3A > o với mọi x hây > 0 với mọi x.

b, Ta có 3A = (3x + 9)2 + 18.

Vì (3x + 9)2 > hoặc = 0 với mọi x => (3x + 9)2 + 18 > hoặc = 18

Do đó 3A > hoặc = 18 => A > hoặc = 6.

Dấu = xảy ra <=> (3x + 9)2 = 0

<=> 3(x + 3) = 0

<=> x + 3 = 0

<=> x = -3

Vậy GTNN của A = 6 khi x = -3

6 tháng 7 2019

a, Từ x = 7 - 4 3  tìm được  x = 2 - 3 . Thay vào Q và tính ta được Q =  3 - 3 1 + 3

b, P =  3 x + 3 9 - x

c, Tìm được  M = P Q = - 3 x + 3

Giải  M ≥ - 2 3  ta tìm được  9 4 ≤ x ≠ 9

d, Tìm được A =  x + 7 x + 3

Ta có A = x + 1 + 6 x + 3 ≥ 2 x + 6 x + 3 = 2

Từ đó đi đến kết luận A m i n = 2 => x = 1

* Cách khác: A = x + 7 x + 3 = x - 3 + 16 x + 3

=  x + 3 + 16 x + 3 - 6 ≥ 2 16 - 6 = 2

=> Kết luận

NV
7 tháng 5 2020

1.

\(y\left(0\right)=-4\) ; \(y\left(5\right)=-4\) ; \(y\left(\frac{5}{3}\right)=\frac{392}{27}\)

\(\Rightarrow y_{max}=\frac{392}{27}\) khi \(x=\frac{5}{3}\)

2.

\(2x-1\ge0\Rightarrow x\ge\frac{1}{2}\)

\(3x+m\le0\Rightarrow x\le-\frac{m}{3}\)

Hệ có nghiệm khi \(-\frac{m}{3}\ge\frac{1}{2}\Rightarrow m\le-\frac{3}{2}\)

3.

\(P=a+b+\frac{1}{a}+\frac{1}{b}\ge a+b+\frac{4}{a+b}=a+b+\frac{1}{a+b}+\frac{3}{a+b}\)

\(P\ge2\sqrt{\frac{a+b}{a+b}}+\frac{3}{1}=5\)

\(P_{min}=5\) khi \(a=b=\frac{1}{2}\)

4.

\(y=2x+\frac{3}{x}\ge2\sqrt{\frac{6x}{x}}=2\sqrt{6}\)

Dấu "=" xảy ra khi \(2x=\frac{3}{x}\Leftrightarrow x=\sqrt{\frac{3}{2}}=\frac{\sqrt{6}}{2}\)

17 tháng 5 2020

cảm ơn bạn nha haha

22 tháng 5 2021

`A=x^4-6x^3+18x^2-6xy+y^2+2012`
`=x^4-6x^3+9x^2+9x^2-6xy+y^2+2012`
`=(x^2-x)^2+(3x-y)^2+2012>=2012`
Dấu "=" xảy ra khi:
$\begin{cases}x=x^2\\y=3x\end{cases}$
`<=>` $\left[ \begin{array}{l}\begin{cases}x=0\\y=3x=0\\\end{cases}\\\begin{cases}x=1\\y=3x=3\\\end{cases}\end{array} \right.$
Vậy `min_A=2012<=>` $\left[ \begin{array}{l}x=y=0\\\begin{cases}x=1\\y=3\end{cases}\end{array} \right.$

28 tháng 5 2018

a, Tìm được A =  1 x - 1 ; với x≥0, x≠1. Ta có A =   1 2 => x = 9

b, Tìm được P =   x + 2 x - 1 . Ta có P<0 và điều kiện x≥0, x≠1 ta tìm được 0≤x≤1

c, M =  x + 12 x - 1 . 1 P =  x + 12 x + 2 = x + 2 2 x + 2 + 4  ≥ 4

Vậy M min = 4 <=> x = 4

21 tháng 6 2019

a/ \(P=3x+\frac{1}{2x}=\frac{x}{2}+\frac{5x}{2}+\frac{1}{2x}\) \(\ge2\sqrt{\frac{x}{2}.\frac{1}{2x}}+\frac{5.1}{2}=\frac{5}{2}\)

"="\(\Leftrightarrow x=1\)

b/ \(B=\frac{3x}{2}+\frac{1}{x+1}=\frac{3\left(x+1\right)}{2}-\frac{3}{2}+\frac{1}{x+1}\)

\(\ge2\sqrt{\frac{3\left(x+1\right)}{2}.\frac{1}{x+1}}-\frac{3}{2}=\frac{-3+2\sqrt{6}}{2}\)

"="\(\Leftrightarrow3\left(x+1\right)^2=2\Leftrightarrow x=\frac{-3+\sqrt{6}}{3}\)

c/ \(C=\frac{x}{3}+\frac{5}{2x-1}=\frac{2x-1}{6}+\frac{1}{6}+\frac{5}{2x-1}\)

\(\ge2\sqrt{\frac{2x-1}{6}.\frac{5}{2x-1}}+\frac{1}{6}=\frac{1+4\sqrt{15}}{6}\)

"="\(\Leftrightarrow x=\frac{6+\sqrt{30}}{12}\)

d/ \(D=\frac{x^2+4x+4}{x}=x+4+\frac{4}{x}\)\(\ge2\sqrt{x.\frac{4}{x}}+4=8\)

"="\(\Leftrightarrow x=2\)

NV
21 tháng 6 2019

a/ \(\frac{x}{2}+\frac{1}{2x}+\frac{5}{2}x\ge2\sqrt{\frac{x}{2}.\frac{1}{2x}}+\frac{5}{2}.1=\frac{7}{2}\)

\("="\Leftrightarrow x=1\)

b/ \(B=\frac{3\left(x+1\right)}{2}+\frac{1}{x+1}-\frac{3}{2}\ge2\sqrt{\frac{3\left(x+1\right)}{2\left(x+1\right)}}-\frac{3}{2}=\frac{-3+2\sqrt{6}}{2}\)

\("="\Leftrightarrow\left(x+1\right)^2=\frac{2}{3}\Rightarrow x=\frac{-3+\sqrt{6}}{3}\)

c/ \(C=\frac{2x-1}{6}+\frac{5}{2x-1}+\frac{1}{6}\ge2\sqrt{\frac{\left(2x-1\right).5}{6\left(2x-1\right)}}+\frac{1}{6}=\frac{1+2\sqrt{30}}{6}\)

\("="\Leftrightarrow\left(2x-1\right)^2=30\Rightarrow x=...\)

d/ \(D=x+\frac{4}{x}+4\ge2\sqrt{x.\frac{4}{x}}+4=8\)

\("="\Leftrightarrow x^2=4\Rightarrow x=...\)