Rút gọn tổng sau:
A=11+112+113+...+1198+1199
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1199\times1198+1998+1997\right)\times\left(1\frac{1}{2}:1\frac{1}{2}-1\frac{1}{3}\right)\)
\(=\left(1436402+1998+1997\right)\times\left(1-1-\frac{1}{3}\right)\)
\(=1440397\times\left(\frac{-1}{3}\right)\)
\(=\frac{-1440397}{3}\)
\(\left(1199\times1198+1998+1997\right)\times\left(1\frac{1}{2}:1\frac{1}{2}-1\frac{1}{3}\right)\)
\(=\left(1436402+1998+1997\right)\times\left(1-1-\frac{1}{3}\right)\)
\(=1440397\times\left(\frac{-1}{3}\right)\)
\(=\frac{-1440397}{3}\)
a: 12/21=4/7=8/14
4/56=1/14
b: 12/15=4/5=24/30
6/36=1/6=5/30
15/50=3/10=9/30
c: 63/77=9/11=81/99
60/108=5/9=55/99
-18/27=-2/3=-66/99
d: -26/-156=1/6=7/42
49/-14=-7/2=-147/42
32/112=2/7=12/42
a: Ta có: \(2\sqrt{28}+2\sqrt{63}-3\sqrt{175}+\sqrt{112}-\sqrt{20}\)
\(=4\sqrt{7}+6\sqrt{7}-15\sqrt{7}+4\sqrt{7}-2\sqrt{5}\)
\(=-\sqrt{7}-2\sqrt{5}\)
\(a,\dfrac{583}{352}=\dfrac{53}{32}\\ b,\dfrac{121212}{313131}=\dfrac{12}{31}\\ c,\dfrac{153.24-153.11}{160-7}=\dfrac{153\left(24-11\right)}{153}=13\)
\(\Rightarrow4A=2^2+2^4+2^6+...+2^{102}\\ \Rightarrow4A-A=2^2+2^4+...+2^{102}-1-2^2-2^4-...-2^{100}\\ \Rightarrow3A=2^{102}-1\\ \Rightarrow A=\dfrac{2^{102}-1}{3}\)
A= 1 + 2\(^2\) + 2\(^4\) +...+ 2\(^{100}\)
⇔2\(^2\)A=2\(^2\)+2\(^4\)+2\(^6\)+2\(^8\)+....+2\(^{100}\)+2\(^{102}\)
⇔4A−A=(2\(^2\)+2\(^4\)+2\(^6\)+2\(^8\)+....+2\(^{100}\)+2\(^{102}\)) − (1+2\(^2\)+2\(^4\)+2\(^6\)+....+2\(^{98}\)+2\(^{100}\))
⇔3A=2\(^{102}\)−1
⇔S=\(\dfrac{2^{102}-1}{3}\)
\(A=\dfrac{1+2+...+9}{11+12+...+19}=\dfrac{\left(9+1\right)\times9:2}{\left(19+11\right)\times9:2}=\dfrac{45}{135}=\dfrac{1}{3}\)
Hờ, bài toán này mà mình cứ ngồi tính tổng như thật -,-
\(\text{1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - 11 - 12 + ... - 111 - 112 + 113 + 114}\)\(=1+\left(2-3-4+5\right)+\left(6-7-8+9\right)+\left(10-11-12+13\right)+...+\left(110-111-112+113\right)+114\)\(=1+114=115\)
Lớp 5: chương trình nâng cao nhé các bạn! ko có số âm nhé!
1.
Ta có: \(A=\sqrt{31-2\sqrt{30}}=\sqrt{\left(\sqrt{30}-1\right)^2}=\left|\sqrt{30}-1\right|=\sqrt{30}-1\)
\(B=\sqrt{11-2\sqrt{30}}=\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}=\left|\sqrt{6}-\sqrt{5}\right|=\sqrt{6}-\sqrt{5}\)
\(C=\sqrt{13-2\sqrt{30}}=\sqrt{\left(\sqrt{10}-\sqrt{3}\right)^2}=\left|\sqrt{10}-\sqrt{3}\right|=\sqrt{10}-\sqrt{3}\)
\(D=\sqrt{39-6\sqrt{30}}=\sqrt{\left(\sqrt{30}-3\right)^2}=\left|\sqrt{30}-3\right|=\sqrt{30}-3\)
\(A=\sqrt{31-2\sqrt{30}}=\sqrt{30}-1\)
\(B=\sqrt{11-2\sqrt{30}}=\sqrt{6}-\sqrt{5}\)
\(C=\sqrt{13-2\sqrt{30}}=\sqrt{10}-\sqrt{3}\)
\(D=\sqrt{39-6\sqrt{30}}=\sqrt{30}-3\)
ta có :
\(11A=11^2+11^3+..+11^{100}=\left(11+11^2+..+11^{99}\right)+11^{100}-11=A+11^{100}-11\)
Vậy \(A=\frac{11^{100}-11}{10}\)