3x^2+14x+8=0
Mấy bạn ơi giúp mk giải phương trình này với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
(2 - 3x)(x + 8) = (3x - 2)(3 - 5x)
⇔ (2 - 3x)(x + 8) - (3x - 2)(3 - 5x) = 0
⇔ (2 - 3x)(x + 8) + (2 - 3x)(3 - 5x) = 0
⇔ (2 - 3x)(x + 8 + 3 - 5x) = 0
⇔ (2 - 3x)(11 - 4x) = 0
⇔ 2 - 3x = 0 hay 11 - 4x = 0
⇔ 2 = 3x hay 11 = 4x
⇔ x = \(\dfrac{2}{3}\) hay x = \(\dfrac{11}{4}\)
Vậy tập nghiệm của pt S = \(\left\{\dfrac{2}{3};\dfrac{11}{4}\right\}\)
<=> (2-3x ) (x+8) + (2-3x ) (3-5x)=0
<=> (2-3x ) ( x+8 + 3-5x ) =0
<=> (2-3x ) ( 11 - 4x ) = 0
=> 2-3x =0 hoặc 11-4x =0
3x = 2 4x =11
x = 2/3 x = 11/4
ĐKXĐ: \(-\dfrac{1}{3}\le x\le6\)
\(\left(\sqrt{3x+1}-4\right)+\left(1-\sqrt{6-x}\right)+\left(3x^2-14x-5\right)=0\)
\(\Leftrightarrow\dfrac{3\left(x-5\right)}{\sqrt{3x+1}+4}+\dfrac{x-5}{1+\sqrt{6-x}}+\left(x-5\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{1+\sqrt{6-x}}+3x+1\right)=0\)
\(\Leftrightarrow x-5=0\) (do \(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{1+\sqrt{6-x}}+3x+1>0;\forall x\))
\(\Rightarrow x=5\)
ĐKXĐ: \(\left\{{}\begin{matrix}3x+1>=0\\6-x>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-\dfrac{1}{3}\\x< =6\end{matrix}\right.\)
\(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
=>\(\sqrt{3x+1}-4+1-\sqrt{6-x}+3x^2-14x-5=0\)
=>\(\dfrac{3x+1-16}{\sqrt{3x+1}+4}+\dfrac{1-6+x}{1+\sqrt{6-x}}+3x^2-15x+x-5=0\)
=>\(\dfrac{3\cdot\left(x-5\right)}{\sqrt{3x+1}+4}+\dfrac{x-5}{\sqrt{6-x}+1}+\left(x-5\right)\left(3x+1\right)=0\)
=>\(\left(x-5\right)\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{\sqrt{6-x}+1}+3x+1\right)=0\)
=>x-5=0
=>x=5(nhận)
\(a,3x-6=5x+2\)
\(3x-5x=2+6\)
\(-2x=8\)
\(x=-4\)
\(b,2\times\left(x-3\right)-3\times\left(x+7\right)=14\)
\(2x-6-3x-21=14\)
\(-x-27=14\)
\(x=-27-14\)
\(x=-41\)
a) 3x - 6 = 5x + 2
3x - 6 - 2 = 5x
3x - 8 = 5x
3x - 5x = 8
-2x = 8
x = -4
b) 2(x - 3) - 3(x + 7) = 14
2x - 6 - 3x - 21 = 14
(-x) - 27 = 14
(-x) = 41
x = -41
c) 3x2 - x - 2 = 0
x.(3x - 1) = 2
x.(3x - 1) = 2 = 1.2 = 2.1 = (-1).(-2) = (-2).(-1)
Xét 4 trường hợp ,ta có :
\(\left(1\right)\hept{\begin{cases}x=1\\3x-1=2\end{cases}\Rightarrow\hept{\begin{cases}x=1\\x=1\end{cases}}}\)(nhận)
\(\left(2\right)\hept{\begin{cases}x=2\\3x-1=1\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=\frac{2}{3}\end{cases}}}\)(loại)
\(\left(3\right)\hept{\begin{cases}x=-1\\3x-1=-2\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\x=-\frac{1}{3}\end{cases}}}\)(loại)
\(\left(4\right)\hept{\begin{cases}x=-2\\3x-1=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\x=0\end{cases}}}\)(loại)
\(DK:-\frac{1}{3}\le x\le6\)
\(\Leftrightarrow\left(\sqrt{3x+1}-4\right)-\left(\sqrt{6-x}-1\text{ }\right)+\left(3x^2-15x\right)+\left(x-5\right)=0\)
\(\Leftrightarrow\frac{3x+1-16}{\sqrt{3x+1}+4}-\frac{6-x-1}{\sqrt{6-x}+1}+3x\left(x-5\right)+\left(x-5\right)=0\)
\(\Leftrightarrow\frac{3\left(x-5\right)}{\sqrt{3x+1}+4}+\frac{x-5}{\sqrt{6-x}+1}+3x\left(x-5\right)+\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(\frac{3}{\sqrt{3x+1}+4}+\frac{1}{\sqrt{6-x}+1}+3x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\left(n\right)\\\frac{3}{\sqrt{3x+1}+4}+\frac{1}{\sqrt{6-x}+1}+3x+1=0\left(l\right)\end{cases}}\)
Vay nghiem cua PT la \(x=5\)
\(Pt\Leftrightarrow\sqrt{3x+1}-4+1-\sqrt{6-x}+3x^2-14x-5=0\)(ĐKXĐ: \(-\frac{1}{3}\le x\le6\))
\(\Leftrightarrow\frac{3x-15}{\sqrt{3x+1}+4}+\frac{x-5}{1+\sqrt{6-x}}+\left(x-5\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(\frac{3}{\sqrt{3x+1}+4}+\frac{1}{1+\sqrt{6-x}}+3x+1\right)=0\)
\(\Rightarrow x=5\)(tmđk)
3x2+14x+8=0
Δ=142-4.3.8
Δ=100
Do Δ>0 phương trình có hai nghiệm phân biệt
x1=\(\dfrac{-14+\sqrt{100}}{2.3}=\dfrac{-2}{3}\)
x2=\(\dfrac{-14-\sqrt{100}}{2.3}=-4\)
Δ= 72 - 8.3 = 49-24=25 >0
Suy ra: x1 = \(\dfrac{-7-\sqrt{25}}{3}\) = -4
x2= \(\dfrac{-7+\sqrt{25}}{3}\) = \(\dfrac{-2}{3}\)