Cho hình thang ABCD có hai đáy là AB và CD. Biết AB = 15 cm , CD = 20 cm;
chiều cao hình thang là 14cm. Hai đường chéo AC và BD cắt nhau ở E .
a) Tính diện tích hình thang ABCD.
b) Tính diện tích tam giác CED.
c) Chứng minh hai tam giác AED và BEC có diện tích bằng nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AI GUP MINH VOI MINH CAN GAP LAM MOI NGUOI GIUP MINH VOI MINH SAP PHAI DI HOC ROI
Giải :
a ) Chiều cao của Hình thang đã cho là :
\(30\times2\div5=12\left(cm\right)\)
Diện tích Hình thang đã cho là :
\(42\times12\div2=252\left(cm^2\right)\)
b) Đáy lớn AB dài là :
\(\left(42+8\right)\div2=25\left(cm\right)\)
Đáy nhỏ CD dài là :
\(25-8=17\left(cm\right)\)
Vậy ...
~ học tốt ~
a: Sửa đề: O là giao của AC và BD
Xét ΔADC và ΔBCD có
AD=BC
DC chung
AC=BD
=>ΔADC=ΔBCD
=>góc ODC=góc OCD=45 độ
=>ΔDOC vuông cân tại O
b: góc OAB=góc ODC=45 độ
=>ΔOAB vuông cân tại O
=>2*OB^2=AB^2
=>AB=OB*căn 2
ΔODC vuông cân tại O
=>DC=OD*căn 2
=>AB+DC=6*căn 2(cm)
Kẻ BH vuông góc DC
Xét ΔBHD vuông tại H có góc BDH=45 độ
nên BH=BD*sin45=3*căn 2(cm)
=>S ABCD=1/2*3*căn 2*6căn 2=18cm2
1. Hình thang có 2 cạnh bên song song nên là bình hành=>Đpcm
2. Tứ giác có 2 cạnh đối AB và CD vừa // vừa bằng nhau nên là bình hành=>đpcm
mỗi cái S là diện tích
a, diện tích hình thang ABCD là: (15+20).142=245(cm2)(15+20).142=245(cm2)
b,BEDE=SAEBSAED=SCEBSCED=SAEB+SCEBSAED+SCED=SABCSACD=ABCD=34BEDE=SAEBSAED=SCEBSCED=SAEB+SCEBSAED+SCED=SABCSACD=ABCD=34
⇒SCEBSCED=34⇒SCEB+SCEDSCED=74⇒SDBCSCED=74⇒SCEBSCED=34⇒SCEB+SCEDSCED=74⇒SDBCSCED=74
⇒SCED=47.SDBC⇒SCED=47.SDBC
SDBC=20.142=140(cm2)SDBC=20.142=140(cm2)
⇒SCED=47.140=80(cm2)⇒SCED=47.140=80(cm2)
c,SAED=SACD−SECDSAED=SACD−SECD
SBEC=SBCD−SECDSBEC=SBCD−SECD
MÀ SACD=SBCD⇒SAED=SBEC