giải phương trình (x+1)(x-1)(x+3)(x+5)=9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{9}{x^2-4}=\frac{x-1}{x+2}+\frac{3}{x-2}\left(ĐKXĐ:x\ne\pm2\right)\)
\(\frac{9}{\left(x-2\right)\left(x+2\right)}=\frac{x-1}{x+2}+\frac{3}{x-2}\)
\(\frac{9}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
Khử mẫu : \(9=\left(x-1\right)\left(x-2\right)+3\left(x+2\right)\)
Đến đây nhường bn, rất dễ =))
b, \(\frac{1}{x-5}-\frac{3}{x^2-6x+5}=\frac{5}{x-1}\)
\(\frac{1}{x-5}-\frac{3}{\left(x-5\right)\left(x-1\right)}=\frac{5}{\left(x-1\right)}\)
\(\frac{\left(x-1\right)}{x-5}-\frac{3}{\left(x-5\right)\left(x-1\right)}=\frac{5\left(x-5\right)}{\left(x-1\right)\left(x-5\right)}\)
Khử mẫu \(x-1-3=5\left(x-5\right)\)
Tự lm nốt mà cho mk hỏi, đề bài có bpt mà bpt đâu
\(\frac{9}{x^2-4}=\frac{x-1}{x+2}+\frac{3}{x-2}\left(ĐKXĐ:x\ne2;-2\right)\)
\(< =>\frac{9}{x^2-2^2}=\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(< =>\frac{9}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{3x+6}{\left(x+2\right)\left(x-2\right)}\)
\(< =>9=x^2-2x-x+2+3x+6\)
\(< =>x^2-\left(2x+x-3x\right)+\left(2+6-9\right)=0\)
\(< =>x^2-2=0\)\(< =>x^2=2\)
\(< =>x=\pm\sqrt{2}\left(tmđk\right)\)
Vậy tập nghiệm của phương trình trên là \(\pm\sqrt{2}\)
Câu 1 :
a, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}=\frac{2x-1}{3}-\frac{3-x}{4}\)
\(\Leftrightarrow\frac{6x+3}{4}+\frac{3-x}{4}=\frac{2x-1}{3}+\frac{5x+3}{6}\)
\(\Leftrightarrow\frac{5x+6}{4}=\frac{9x+1}{6}\Leftrightarrow\frac{30x+36}{24}=\frac{36x+4}{24}\)
Khử mẫu : \(30x+36=36x+4\Leftrightarrow-6x=-32\Leftrightarrow x=\frac{32}{6}=\frac{16}{3}\)
tương tự
\(\frac{19}{4}-\frac{2\left(3x-5\right)}{5}=\frac{3-2x}{10}-\frac{3x-1}{4}\)
\(< =>\frac{19.5}{20}-\frac{8\left(3x-5\right)}{20}=\frac{2\left(3-2x\right)}{20}-\frac{5\left(3x-1\right)}{20}\)
\(< =>95-24x+40=6-4x-15x+5\)
\(< =>-24x+135=-19x+11\)
\(< =>5x=135-11=124\)
\(< =>x=\frac{124}{5}\)
\(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)=9\)
\(\Leftrightarrow\left(x^2+8x+7\right)\left(x^2+8x+15\right)=9\)
Đặt \(x^2+8x+11=a\)
Khi đó,phương trình tương đương với:
\(\left(a-4\right)\left(a+4\right)=9\)
\(\Leftrightarrow a^2-16=9\)
\(\Leftrightarrow\left(a-5\right)\left(a+5\right)=0\)
Đến đây dễ rồi ha
Ta có:
2(a − 1)x − a(x − 1) = 2a + 3
⇔(a − 2)x = a + 3 (3)
Do đó, khi a = 2, phương trình (2) tương đương với phương trình 0x = 5.
Phương trình này vô nghiệm nên phương trình (2) vô nghiệm.
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
(x-1)(x-7)(x-3)(x-5)=9\(\Rightarrow\)(x^2-8x+7)(x^2-8x+15)=9 Đặt x^2-8x+7=a\(\Rightarrow\)a(a+8)=9 Từ đó bạn giải ra a rồi suy ra tìm x nha!
Có: (x + 1)(x + 3)(x - 1)(x + 5) = 9
=> (x2 + 4x + 3)(x2 + 4x - 5) = 9
Đặt a = x2 + 4x + 3 (a \(\ge\)0) , ta đc:
a.(a - 8) = 9
=> a2 - 8a = 9
=> a2 - 8a - 9 = 0
=> (a - 9)(a + 1) = 0
=> a - 9 = 0 => a = 9 (thỏa)
hoặc a + 1 = 0 => a = -1 (loại)
Khi a = 9
=> x2 + 4x + 3 = 9
=> x2 + 4x - 6 = 0
Denta = 42 - 4.(-6) = 40
\(\Rightarrow\sqrt{\Delta}=2\sqrt{10}\)
\(\Rightarrow x=-2+\sqrt{10};x=-2-\sqrt{10}\)
Vậy \(x=-2+\sqrt{10};x=-2-\sqrt{10}\)
Bài này k có nghiệm nguyên nha bạn