Cho đường tròn (O;R) và điểm A cố định ngoài đường tròn. Vẽ đường thẳng d vuông góc với OA tại A. Trên d lấy M. Qua M kẻ tiếp tuyến ME, MF với (O). Nối EF cắt OM tại H, cắt OA tại B. Chứng minh:
a) Tứ giác ABHM nội tiếp
b) OA.OB = OH.OM = R2
c) Tâm I của đường tròn nội tiếp tam giác MEF thuộc một đường tròn cố định khi M di chuyển trên d
d) Tìm vị trí của M để diện tích tam giác HBO lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Vì \(A,M,B\in\left(O\right)\); AB là đường kính
\(\Rightarrow\widehat{AMB}=90^0\)
\(\Rightarrow AM\perp MB\)
Xét tam giác ANB có: BM vừa là đường cao vừa là đường trung bình
\(\Rightarrow\Delta ANB\)cân tại B
\(\Rightarrow NB=BA\)
\(\Rightarrow N\in\left(C;\frac{BA}{2}\right)\)cố định
b) Vì BM là đường cao của tam giác ABN cân tại B
=> BM là phân giác góc ABN
=> góc ABM= góc NBM
Xét tam giác ARB và tam giác NRB có:
\(\hept{\begin{cases}BRchung\\\widehat{ABM}=\widehat{NBM}\left(cmt\right)\\AB=NB\end{cases}\Rightarrow\Delta ARB=\Delta NRB\left(c-g-c\right)}\)
\(\Rightarrow\widehat{RAB}=\widehat{RNB}=90^0\)
\(\Rightarrow RN\perp BN\)
\(\Rightarrow RN\)là tiếp tuyến của (C)
c) Ta có: A,P,B thuộc (O); AB là đường kính
\(\Rightarrow\widehat{APB}=90^0\)
\(\Rightarrow AP\perp BP\)
\(\Rightarrow RN//AP\)( cùng vuông góc với NB )
Xét tam giác NAB có: \(\hept{\begin{cases}MB\perp AN\\AP\perp BN\end{cases}}\); AP cắt BM tại Q
\(\Rightarrow Q\)là trực tâm tam giác NAB
\(\Rightarrow NQ\perp AB\)
=> NQ // AR( cùng vuông góc với AB)
Xét tứ giác ARNQ có:
\(\hept{\begin{cases}AR//NQ\left(cmt\right)\\RN//AP\left(cmt\right)\end{cases}\Rightarrow ARNQ}\)là hình bình hành
Mà 2 đường chéo RQ và AN vuông góc với nhau
=> ARNQ là hình thoi

A B C O M N E I K O'
a) Ta có ^BME = ^BOE = 2.^BIE (= 2.^BIM) => ^BIM = ^MBI = ^BME/2 => \(\Delta\)MBI cân tại M (đpcm).
b) Ta dễ thấy ^KNA = ^OBA = ^OAB (= 300) => \(\Delta\)NKA cân tại K => KA = KN (1)
Lại có ^BEN = 1800 - ^BON = 600 = ^CAB = ^BEC => Tia EN trùng tia EC hay N,E,C thẳng hàng
Từ đó ^CMN = ^BEC = 600 = ^CBA => MN // BK
Mà tứ giác BMNK nội tiếp (O') nên KN = BM = IM (Vì \(\Delta\)MBI cân tại M) (2)
Từ (1) và (2) suy ra IM = KA (đpcm).

ΔKBO=ΔKCO
=>KB=KC
=>KO là trung trực của BC
ΔKCO đồng dạng với ΔCIO
=>OC/OI=OK/OC
=>OC^2=OI*OK
=>OI*OK=ON^2
=>OI/ON=ON/OK
=>ΔOIN đồng dạng với ΔONK
=>gócc ONI=góc OKN
Tương tự, ta có: OI/OM=OM/OK
=>ΔMKO đồng dạng với ΔIMO
=>góc MKO=góc IMO=góc INO
=>góc MKD=góc NKD
=>K,M,N thẳng hàng
=>K luôn thuộc MN
O A M E F H B I
Hướng dẫn giải:
a) Do ME, MF là tiếp tuyến với đường tròn suy ra EF ⊥ OM
Tứ giác ABHM có góc A = góc H = 900 nên tứ giác này nội tiếp đường tròn bán kính MB.
b) \(Δ_VOHB ∼ Δ_VOAM\) (g.g)
\(\Rightarrow \dfrac{OH}{OA}=\dfrac{OB}{AM}\)
\(\Rightarrow OA.OB=OH.OM\) (1)
\(Δ_VOHE∼ Δ_VOEM\) (g.g)
\(\Rightarrow \dfrac{OH}{OE}=\dfrac{OE}{OM}\)
\(\Rightarrow OH.OM=OE^2=R^2\)(2)
Từ (1) và (2) suy ra \(OA.OB=OH.OM =R^2\)
c) Gọi I là giao điểm của OM với đường tròn (O). Nối FI.
Do \(\stackrel\frown{FI}=\stackrel\frown{EI}\) suy ra \(\widehat{MFI}=\widehat{EFI}\)
Suy ra FI là phân giác của góc \(\widehat{MFE}\)
Lại có MI là phân giác của góc \(\widehat{EMF}\)
Do đó I là giao điểm của đường phân giác trong của tam giác MEF
\(\Rightarrow\) I là tâm đường tròn nội tiếp tam giác MEF.
Mà I thuộc đường tròn (O) cố định. Suy ra đpcm.
d) Diện tích tam giác HBO: \(S=\dfrac{1}{2}HO.HB\)
Xét \(Δ_VOHB∼ Δ_VOAM\) (g.g)
\(\Rightarrow \dfrac{HB}{AM}=\dfrac{OB}{OM}\)
\(\Rightarrow HB.OM=AM.OB\) (3)
Có: \(OH.OM=R^2\) (4)
Nhân (3) và (4) vế với vế ta được: \(OH.HB.OM^2=R^2.AM.OB=R^2.AM.\dfrac{R^2}{OA}\)
\(\Rightarrow OH.HB = R^4.\dfrac{AM}{OA.OM^2}= R^4.\dfrac{AM}{OA.(OA^2+AM^2)}\)
Áp dụng BĐT Cô si với OA và AM ta có: \(OA^2+AM^2\ge2.\sqrt{OA^2.AM^2}=2.OA.AM\)
Dấu "=" xảy ra khi: \(OA=AM\)
\(\Rightarrow OH.HB \le R^4.\dfrac{AM}{OA.2.OA.AM}=\dfrac{R^4}{2OA^2}\)
Suy ra: \(S_{max}=\dfrac{R^4}{4.OA^2}\) khi \(OA=AM\)
Thanks ạ