cho a,b,c thỏa mãn: a + b + c = 0.
c/m: ab + bc + ca \(\le\) 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xin lỗi xíu nha cái chỗ suy ra 2ab+2bc+2ac >/= 0 bị đánh lộn dấu đổi lại thành ab=bc+ca</=0 hộ nhé
em dùng tính chất tổng quát này nè \(x^2\ge0\)với mọi x
như vậy ta có a+b+c=0\(\Rightarrow\left(a+b+c\right)^2=0\)\(\Leftrightarrow a^{2^{ }}+b^2+c^2+2ab+2bc+2ca=0\)mà ta luôn có \(a^2\ge0\)với mọi a;\(b^2\ge0\)với mọi b;\(c^2\ge0\)nên suy ra \(a^2+b^2+c^2\ge0\forall a,b,c\)mà \(a^2+b^2+c^2+2ab+2bc+2ca=0\Rightarrow2ab+2bc+2ca\ge0\)\(\Rightarrow\)ab+bc+ca\(\ge\)0.dấu bằng xảy ra khi và chỉ khi a=b=c=0
Ta có: a + b + c = 0.
=> a = - b - c
b = -a - c
c = - a- b.
Nên ta có:
ab + bc + ca = (-b-c)b + (-a-c)c + (-a-b)a
= -b^2 - bc - ca -c^2 - a^2 - ab
= -( a^2 + b^2 + c^2)- (ab + bc + ca)
=> 2(ab + bc + ca) = -(a^2 + b^2 +c^2)
Mà -(a^2 + b^2 + c^2) bé hơn hoặc bằng 0 (do a^2 + b^2 + c^2 lớn hơn hoặc bằng 0)
=> 2(ab + bc + ca ) bé hơn hoặc bằng 0.
=> ab + bc + ca bé hơn hoặc bằng 0.
Vậy ab + bc + ca bé hơn hoặc bằng 0.
Ta có:
\(\Rightarrow a\left(a+b+c\right)=b\left(a+b+c\right)=c\left(a+b+c\right)=0\)
\(\Rightarrow a^2+ab+ac=ab+b^2+bc=ca+cb+c^2=0\)
\(\Rightarrow\left(ab+bc+ca\right)+\left(a^2+b^2+c^2\right)=0\)
Do \(a^2+b^2+c^2\ge0\Rightarrow ab+bc+ca\le0^{đpcm}\)
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
hay \(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)Ta có: \(a^2+b^2+c^2\ge0\) .Dấu "=" xảy ra \(\Leftrightarrow a=b=c=0\)
Suy ra \(ab+bc+ca=-\dfrac{a^2+b^2+c^2}{2}\le-\dfrac{0}{2}=0\)
Dấu "=" xảy ra \(\Leftrightarrow a^2=b^2=c^2=0\Leftrightarrow a=b=c=0\)
Ta cần chứng minh
\(a+b+c\ge ab+bc+ca\)
do \(x^2+y^2+z^2\ge xy+yz+zx\)
đặt \(a=\dfrac{2y}{x+z};b=\dfrac{2z}{y+x};c=\dfrac{2x}{z+y}\)
\(\Rightarrow\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{x}{y+z}\ge2\left(\dfrac{xy}{\left(x+z\right)\left(y+z\right)}+\dfrac{yz}{\left(x+z\right)\left(x+y\right)}+\dfrac{zx}{\left(x+y\right)\left(y+z\right)}\right)\)
\(\Leftrightarrow x^3+y^3+z^3+3xyz\ge xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)\)
dấu ''='' khi \(a=b=c=1\) hoặc \(a=b=2,c=1\)
\(2\left(ab+bc+ac\right)=\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)\)
\(\Rightarrow2\left(ab+bc+ac\right)=0-\left(a^2+b^2+c^2\right)\le0\)
\(\Rightarrow ab+bc+ac\le0\)
"=" khi \(a=b=c=0\)