cho f(x)=x3+6x2+11x - 6
tìm tập hợp nghiệm của đa thức đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x)=0<=>x3 -6x2+11x -6=0
<=>(x-1)(x-2)(x-3)=0
<=>x-1=0 hoặc x-2=0 hoặc x-3=0
<=>x=1 hoặc 2 hoặc 3
Vậy tập nghiệm của f(x) là {1;2;3}
f﴾x﴿=0<=>x 3 ‐6x 2+11x ‐6=0
<=>﴾x‐1﴿﴾x‐2﴿﴾x‐3﴿=0
<=>x‐1=0 hoặc x‐2=0 hoặc x‐3=0
<=>x=1 hoặc 2 hoặc 3
Vậy tập nghiệm của f﴾x﴿ là {1;2;3}
Chọn B
Tập xác định của hàm số là .
Ta có: .
.
Hàm số liên tục tại khi
Bài 2:
x^3+6x^2+12x+m chia hết cho x+2
=>x^3+2x^2+4x^2+8x+4x+8+m-8 chia hết cho x+2
=>m-8=0
=>m=8
\(\hept{\begin{cases}x_1=\frac{5}{2}\\x_2=\frac{7}{3}\end{cases}}\)
\(f\left(x\right)=x^3-x+7\)
\(g\left(x\right)=-x^3+8x-14\)
\(\Rightarrow f\left(x\right)+g\left(x\right)=7x-7\)
Nghiệm của đa thức \(f\left(x\right)+g\left(x\right)=0\Rightarrow7x-7=0\)
\(\Rightarrow x=1\)
a: f(x)=3x^4+2x^3+6x^2-x+2
g(x)=-3x^4-2x^3-5x^2+x-6
b: H(x)=f(x)+g(x)
=3x^4+2x^3+6x^2-x+2-3x^4-2x^3-5x^2+x-6
=x^2-4
f(x)-g(x)
=3x^4+2x^3+6x^2-x+2+3x^4+2x^3+5x^2-x+6
=6x^4+4x^3+11x^2-2x+8
c: H(x)=0
=>x^2-4=0
=>x=2 hoặc x=-2
Ta thay nghiệm x=-1 vào phương trình tổng quát được:
a(-1)2+b(-1) +c=0
=> a-b+c=0 hay a-b=-c (đpcm)
Áp dụng: ta thấy: a=8 b=11 c=3, a-b+c= 8-11+3=0
=> phương trình có một nghiệm là x=-1
<Mở rộng hơn nữa là phương trình dạng như trên có một nghiệm là -1 và nghiệm còn lại có dạng là -c/a>
\(x^4-x^3+6x^2-x+a=x^2\left(x^2-x+5\right)+x^2-x+a\)
Do \(x^2\left(x^2-x+5\right)\) chia hết \(x^2-x+5\)
\(\Rightarrow x^2-x+a\) chia hết \(x^2-x+5\)
\(\Rightarrow a=5\)
Đặt f(x)=0
\(\Leftrightarrow x^3+6x^2+11x-6=0\)
\(\Leftrightarrow x\in\left\{-3+\sqrt{15};-3-\sqrt{15}\right\}\)