K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2018

\(3^{n+2}-2^{n+2}+3^n-2^n\)

=\(\left(3^{n+2}+3^n\right)+\left(-2^{n+2}-2^n\right)\)

=\(3^n\left(3^2+1\right)-2^n.\left(2^2+1\right)\)

=\(3^n.10-2^n.5\)

=\(3^n.10-2^{n-1}.10\)

=\(10\left(3^n-2^{n-1}\right)\) chia hết cho 10

=> ....(đề bài ) chia hết cho 10

7 tháng 4 2018

3n + 2 - 2n + 2 + 3n - 2n

= (3n + 2 + 3n) - (2n + 2 + 2n)

= 3n (32 + 1) - 2n (22 + 1)

= 3n . 10 - 2n. 5

= 3n . 10 - 2n - 1 . 10

= (3n - 2n - 1 ).10 \(⋮\)10

4 tháng 10 2018
6 tháng 2 2022

Chứng minh với mọi số nguyên dương n thì

3^n + 2 – 2^n + 2 + 3^n – 2^n chia hết cho 10

                                      Giải

3^n + 2 – 2^n + 2 + 3^n – 2^n

= 3^n+2 + 3^n – 2^n + 2 -  2^n

= 3^n+2 + 3^n – ( 2^n + 2 + 2^n )

= 3^n . 3^2 + 3^n – ( 2^n . 2^2 + 2^n )

= 3^n . ( 3^2 + 1 ) – 2^n . ( 2^2 + 1 )

= 3^n . 10 – 2^n . 5

= 3^n.10 – 2^n -1.10

= 10.( 3^n – 2^n-1)

Vậy 3^n+2 – 2^n +2 + 3^n – 2^n chia hết cho 10

25 tháng 9 2017

Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3

=> ĐPCM;

3 tháng 10 2019

A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6

21 tháng 11 2017

Ta có :

\(3^{n+2}-2^{n+2}+3^n-2^n\) =\(3^n.3^2-2^n.2^2+3^n-2^n\)

=\(3^n.9-2^n.4+3^n-2^n\) =\(3^n.\left(9+1\right)-2^n.\left(4+1\right)\)

=\(3^n.10-2^n.5=3^n.10-2^{n-1}.2.5\) = \(3^n.10-2^{n-1}.10\)

=\(10.\left(3^n-2^{n-1}\right)⋮10\)

\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\) (ĐPCM)

21 tháng 11 2017

Sửa : 3n+2-2n+2+3n-2n

= 3n.9 - 2n.4+3n-2n

= 3n.10 - 2n.5

= 3n.10 - 2n.1/2.10

= 10 . (3n-2n.1/2) chia hết cho 10

11 tháng 8 2016

a) Đặt \(A=\frac{3n+1}{5n+2}\). Gọi ƯCLN(3n+1 , 5n+2) = d \(\left(d\ge1\right)\) 

Khi đó : \(3n+1⋮d\) và \(5n+2⋮d\)

\(\Rightarrow5\left(3n+1\right)⋮d\) và \(3\left(5n+2\right)⋮d\)

\(\Rightarrow3\left(5n+2\right)-5\left(3n+1\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\le1\) mà \(d\ge1\Rightarrow d=1\)

Suy ra ƯCLN(3n+1 , 5n+2) = 1 , vậy A là phân số tối giản.

b)  Đặt \(B=\frac{n^3+2n}{n^4+3n^2+1}\) . Gọi ƯCLN(n3+2n , n4+3n2+1) = d \(\left(d\ge1\right)\)

Khi đó : \(B=\frac{n\left(n^2+2\right)}{n^2\left(n+2\right)+n^2+1}\)

Ta có : \(n\left(n^2+2\right)⋮d\) và \(n^2\left(n+2\right)+n^2+1⋮d\)

Từ  \(n\left(n^2+2\right)⋮d\) \(\Rightarrow\left[\begin{array}{nghiempt}n⋮d\\n^2+2⋮d\end{array}\right.\)

TH1. Nếu \(n⋮d\) thì ta viết dưới mẫu thức B dưới dạng : 

\(n\left(n^3+3n\right)+1⋮d\) . mà n(n3+3n)\(⋮\)d => \(1⋮d\) \(\Rightarrow d\le1\)

Mà \(d\ge1\Rightarrow d=1\). Lập luận tương tự câu a) , suy ra đpcm

TH2. Nếu \(n^2+2⋮d\) thì ta viết mẫu thức B dưới dạng : 

\(\left(n^4+2n^2\right)+\left(n^2+2\right)-1=\left(n^2+2\right)\left(n^2+1\right)-1⋮d\)

mà  n2+2 \(⋮\)d nên \(1⋮d\Rightarrow d\le1\) mà \(d\ge1\) => d = 1

Lập luận tương tự...

 

11 tháng 8 2016

a)Gọi UCLN(3n+1;5n+2) là d

Ta có:

[3(5n+2)]-[5(3n+1)] chia hết d

=>[15n+6]-[15n+5] chia hết d

=>1 chia hết d.Suy ra 3n+1 và 3n+5 là số nguyên tố cùng nhau

=>Phân số tối giản 

b)Gọi d là UCLN(n3+2n;n4+3n2+1)

Ta có:

n3+2n chia hết d =>n(n3+2n) chia hết d

=>n4+2n2 chia hết d (1)

n4+3n2-(n4+2n2)=n2+1 chia hết d

=>(n2+1)2=n4+2n2+1 chia hết d (2)

Từ (1) và (2) => (n4+3n2+1)-(n4-2n2) chia hết d

=>1 chia hết d

=>d=1.Suy ra n3+2n và n4+3n2+1 là 2 số nguyên tố cùng nhau

=>Phân số trên tối giản 

 

10 tháng 7 2018

mk làm luôn nhá ^^

tá có:A=(2n+1).(n2-3n-1)-2n3+1=\(2n^3-6n^2-2n+n^2-3n-1-2n^3+1.\)

                                                  =\(-5n^2-5n\)

 Ta thấy:\(-5n⋮5\Rightarrow-5n^2⋮5\)

        \(\Rightarrow-5n^2-5n⋮5\)với mọi số nguyên n

\(\Rightarrowđpcm\)